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Abstract: With the recent emphasis on batch processing by the emerging industries
like the microelectronics and biotechnology, the interest in batch process control
has been renewed. In this paper, we present an overview of the Iterative Learning
Control (ILC) technique, which can be used to improve tracking control performance
in batch processes. We present the fundamental concepts and review the various ILC
algorithms, with a particular focus on a model-based algorithm called Q-ILC and an
application involving a Rapid Thermal Processing (RTP) system. The study indicates
that one can solve a seemingly very difficult multivariable nonlinear tracking problem
with relative ease by combining the ILC technique with basic process insights and
standard system identification techniques. We also bring forth some related techniques
in the literature with the hope of unifying them and also suggest some remaining
challenges.
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1. INTRODUCTION

Batch processes have historically lagged contin-
uous processes in terms of development and de-
ployment of advanced optimization and control
tools. Whereas significant developments have oc-
curred during the past few decades in the indus-
trial practice of continuous process control (Qin
and Badgwell, 1996; Morari and Lee, 1999), the
same has not been the case for batch processes,
which have continued to rely on old techniques like
ladder-logics and PID control. Part of this can be
attributed to the comparatively lower production
volume through batch processing. Another reason
for this may be that batch processes present a
set of challenges uncommon in continuous pro-
cesses, including nonstationary operating recipes,
the consequent exposure to process nonlinearity,
and significant variations in the initial charge con-

dition (Berber, 1996). These challenges are not
easily met by the standard linear optimal control
theories and tools, which are widely adopted for
continuous industrial process control today.

However, the role of batch processing is ever-
increasing in today’s diversified manufacturing en-
vironment. Besides the fine or specialty chemicals,
new industries that have emerged from the VLSI
technology, bio-technology, and material science
are mostly batch-processing-oriented. In accor-
dance with its increased importance, its operation
support tools need to be upgraded. Such a shift in
the trend has already started taking place, as evi-
denced by the extensive use of run-to-run control
and multivariate monitoring in some of the new
industries. We believe, however, that much more
can be done, even with the existing technologies
today. For example, Iterative Learning Control
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(ILC), the topic of this paper, has not enjoyed a
serious look by the practitioners thus far despite
its vast potentials for improving tracking control
performance in batch processes.

This paper presents an overview of ILC in the
context of trajectory tracking problems in batch
processes. Although basic theories of ILC have
been firmly laid out in the literature, it is not
always straightforward to apply them to achieve
success in practice. We present ILC in the context
of a multiple point temperature tracking problem
in a Rapid Thermal Processing (RTP) system. By
doing so, our objective is to bring forth the unique
capabilities of ILC for batch process control and
at the same time some of the subtle challenges one
may face in applying the technique. Fortunately,
such challenges are not insurmountable and the
standard linear ILC technique can provide an
excellent performance for what appears to be a
very difficult nonlinear trajectory tracking prob-
lem. We also point out some related techniques
like Run-to-Run Control and Repetitive Control,
highlighting the similarities and differences. Fi-
nally, we point to some of the open issues left for
future research.

2. EXEMPLARY PROBLEM:
TEMPERATURE TRACKING CONTROL

FOR A RTP SYSTEM

In the operation of Rapid Thermal Processing
(RTP) systems, one of the most important chal-
lenges is to achieve uniform temperature distri-
bution across the wafer surface while tracking a
reference trajectory with a temperature range of
several hundred degrees. From the system theo-
retic viewpoint, it is a nonlinear, multivariable
control problem involving a batch system with fast
dynamics and noisy measurements. Added to this
are the facts that a single RTP system can be
used for different wafer fabrications demanding
different temperature trajectories to be followed
and the characteristics of a RTP system may vary
significantly by reasons like contamination. All
these factors combine to make reliable modeling of
the system very difficult (Cho and Gyugyi, 1997).

In the experimental RTP equipment, the sili-
con wafer is heated by an array of 38 bar-type
tungsten-halogen lamps, the maximum power of
which is 1 Kw each. The lamps are assembled to-
gether by two, four or six to comprise a total of ten
independent groups, as shown in the figure. The
chamber wall is cooled with circulating cooling
water. The electric power inputs to the ten groups,
denoted by u1, · · · , u10, are therefore the manip-
ulated inputs. Wafer temperature was measured
at eight points with K-type thermocouples (TC’s)
glued on the backside of the wafer surface. As

a consequence, the experimental RTP equipment
is configured as an 8×10 MIMO system. In the
commercial RTP operation, however, such a wafer
with embedded thermocouples would be available
only for testing purposes. In the actual production
runs, in-situ temperature measurements would
have to be provided by pyrometers, and for eco-
nomic reasons, the number of such sensors per
equipment may be limited. Hence, in addition to
the full 8×10 system, we investigate the possibil-
ity of limiting the temperature measurements to
just three locations. In this case, selection of the
measurement points becomes an important issue.

Radiative heat transfer equations can be used to
construct a fundamental or semi-empirical model
representing heat balances. Due to the space lim-
itation, we refer the readers to the open lit-
erature for the details of such models (Lee et
al., 2001b; Lee et al., 2003). Given the idiosyn-
cratic designs of individual equipments, however,
it is more realistic to try to develop a control
model from system identification, which is the
approach we adopt here.

3. ITERATIVE LEARNING CONTROL

ILC is a general technique for improving transient
tracking performance of a system that executes a
same operation repeatedly. In its basic formula-
tion, a target system has the following character-
istics: i) Each run lasts for a fixed length of time;
ii) the reference trajectories (to be followed by the
outputs) remain the same from run to run; iii) the
process state is reset to a same value at the start of
each operation. ILC techniques developed under
such assumptions can be used effectively on a
process with some disturbances and initialization
errors as well as occasional changes in the refer-
ence trajectories, however. Temperature tracking
problems in many chemical batch processes can
be tailored to fit into this category and hence the
relevance to batch process operations.

3.1 Historical Account

It seems that the first technical contribution
on ILC was the patent work by Garden (1971)
three decades ago. Although a few indepen-
dent contributions followed after that (Miller and
G. T. Mallick, 1978; Uchiyama, 1978), it seems to
have gone unnoticed by the larger control com-
munity until Arimoto et al. (1984) proposed the
so-called D-type learning algorithm as a teaching
mechanism for robot manipulators. This seminal
work launched ILC into the mainstream control
community and established it as a new branch
of control technology. Significant body of work
followed after that, which we summarize below.
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However, we do not claim the list of references to
be complete or unbiased.

3.2 Basic Formulation

Let ek = r−yk and uk represent the output error
trajectory and the manipulated input trajectory
for the kth run. For sampled data systems, these
trajectories can be represented by finite dimen-
sional vectors as follows:

ek �
[
ek(1)T ek(2)T · · · ek(N)T

]T
(1)

uk �
[
uk(0)T uk(1)T · · · uk(N − 1)T

]T

where N represents the number of sample points
in each run. Note that the sampling interval do not
need to be same for the inputs and the outputs or
even uniform throughout the batch interval. This
assumption is made here just for the convenience
of exposition.

The objective in the ILC design can be simply
stated as:

‖ek‖ → 0 as k → ∞ (2)

A basic rule for updating the input trajectory
on a run-to-run basis is the so-called first-order
learning algorithm, which is represented by

uk = uk−1 + Hek−1 (3)

Here, H is called the learning filter matrix, which
in general can be any map that transforms the
finite-length error trajectory to a trajectory whose
length and dimension are equal to those of the in-
put trajectory. The learning filter can be designed
as a dynamic filter, H(s) or H(z), operating on
the time signal e(t), depending on the underlying
time domain for the system representation. Since
H operates on the error trajectory of the previous
run, it is not limited to causal maps, however.
This is what gives ILC the distinct ability to
overcome hindrances from dynamic elements like
time delays to provide perfect tracking.

Note that the above learning algorithm has an
integral action over the run index k. Hence, one
can intuitively argue that (2) can be fulfilled with
an appropriately chosen H, just as the integral
action in a PID controller can remove offset in
the time domain. Since batch processes have no
dynamics carried over from one run to next, pure
integral control such as in (3) is sufficient in
achieving the convergence. Nevertheless, a high-
order algorithm like

uk = uk−1 + H1ek−1 + · · · + Hpek−p (4)

has also been studied as a generalization of (3)
(Bien and Huh, 1989). When all the states of
a batch process are reset to same values at the
start of each run and disturbances do not vary
from batch to batch, there is no benefit to be
gained from the high-order generalization. How-
ever, when errors do not carry over completely
from one batch run to next due to run-specific dis-
turbances, measurement noises, and model errors,
the high-order algorithm can deliver a superior
performance owing to its ability to filter the error
trajectories by using the results of several runs.

3.3 Model-Based Formulation

With the above form of the learning algorithm,
the problem of ILC design is reduced to the de-
sign of the learning filter. In the initial period
of development, researchers focused on model-free
approaches, where a certain generic structure is
presupposed on H and the parameters are tuned
to achieve the convergence. D-type(Arimoto et
al., 1984) and PID-type(Bondi et al., 1988) algo-
rithms are such examples.

Alternatively, model-based algorithms were intro-
duced in order to address more complex prob-
lems (e.g., MIMO systems) and to bring more
insights into the technique. Early approaches were
based on direct model inversion, i.e., H = G−1,
and its variants(Togai and Yamano, 1985; Oh et
al., 1988; Lucibello, 1992; Moore, 1993; Lee et
al., 1994), where G represents the input-output
map of the concerned process (i.e., yk = Guk).
Note that G contains information about the batch
process dynamics and is similar to the concept
of dynamic matrix used in model predictive con-
trol (MPC). Though we are using a linear map
here, note that the underlying dynamics are not
limited to be linear time-invariant; time-varying
dynamics (approximating nonlinear dynamics for
instance) may be easily incorporated into the G
matrix. In the case that G is exactly known,
this particular choice of H eliminates the error
completely after one iteration, which can be eas-
ily verified by multiplying G on both sides of
(3). Nonminimum-phase dynamics do not cause
any problem in the inversion here as H is not
restricted to be causal. In practice, however, the
inverse-model-based learning filter can give many
problems. For a typical over-damped system, of
which the inverse has increasingly higher gains
with the frequency, the filter can be very sensitive
to high frequency components of ek(t) producing
extremely spiky input profiles. Also, since high
frequency dynamics typically carry large model
errors, the high filter gains in high frequency re-
gion can cause divergence.
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Furthermore, the objective in (2) cannot always
be satisfied for general MIMO systems. When the
number of output variables is larger than that of
input variables or when constraints become active,
the error may not be made zero in general. An
alternative objective may be to try to converge
to an input trajectory that minimizes the output
error:

‖ek‖ → min
u

‖e‖ as k → ∞ (5)

where ‖·‖ is some vector norm. The 2-norm is the
typical choice.

Moore (1993) proposed to solve

min
uk

‖ek‖2 (6)

before the start of the kth run, based on the error
from the k−1th run. For a linear system, y = Gu,
the error model can be written as

ek = ek−1 − G(uk − uk−1) (7)

The least squares solution is

uk = uk−1 + G+ek−1 (8)

where the superscript + represents the pseudo-
inverse. Alternatively, Amann et al. (1996) and
Lee et al. (1996) independently proposed to solve

min
∆uk

{‖ek‖2
Q + ‖∆uk‖2

R

}
(9)

In the above, ∆uk = uk − uk−1 and the notation
of ‖x‖2

P denotes xT Px. The resulting input for
the linear system, y = Gu, is given as

uk = uk−1 + (GT QG + R)−1GT Qek−1 (10)

As k → ∞, input profiles that result from (8)
and (10) converge to the same limit u∗ that sat-
isfies ‖e(u∗)‖ = minu ‖e‖. What happens with
(10) is that the convergence is retarded by the
input change penalty term. In particular, high-
frequency type changes in the input profile, which
tend to be large due to low system gains, are
penalized heavily. In the course of learning, there-
fore, much smoother input profiles that drive the
error to a near-minimum (i.e., minimum except
for the high frequency components for which the
learning gains are much too low compared to the
system gains due to the input penalty term) are
obtained by (10). In practice, the learning can
be stopped before the input profiles become very
spiky or divergence behavior starts setting in. For
simplicity, we call the algorithm based on (9) Q-
ILC (Quadratic criterion-based ILC) hereafter.

Later, Lee et al. (2000) considered a batch process
subject to stochastic disturbances and proposed

an observer-based Q-ILC algorithm. This exten-
sion provided a more convenient and intuitive
tuning knob to control the rate of convergence and
the ability to take a more systematic account of
disturbances and noises. A robustness study of Q-
ILC indicated that convergence can be achieved in
the presence of a fairly large model error (Lee et
al., 2000; Kim et al., 2000). They also pointed out
that, when the constraints are given as linear in-
equalities, the optimal input profile respecting the
constraints can be obtained through a quadratic
programming technique. Convergence of the con-
strained algorithm with an observer was proved in
Lee and Lee (2000).

4. PROTOTYPICAL MODEL-BASED ILC
TECHNIQUE

There are several similar versions of Q-ILC
(Amann et al., 1996; Lee et al., 2000; Lee et
al., 1999; Chin et al., 2004). The basic idea for all
these versions is the same, but they differ in the
way the filtering of error trajectories (or detuning
of the learning gain) is accomplished, and whether
and how real-time feedback control (RFC) signal
is added to the feedforward ILC signal. Here we
present a particular version of Q-ILC, which is
based on the work by Chin et al. (2004) and
was found to be particularly suited to the RTP
application.

A general form of ILC combined with RFC is

uk(t) = uk−1(t) + H1(t)ek−1(1 : N)
+H2(t)ek(1 : t) (11)

where (i : j) means data from t = i to j and
H1 and H2 represent the gains for the ILC and
RFC, respectively. The role of RFC is to further
modify uk(t) based on the real-time error feedback
of ek(1 : t), which contains information on a
new disturbance occurring during the on-going kth

run. However, under this scenario, the updated
input for the next run would also be affected by
the new disturbance, which may not show up in
the next run. The following technique attempts
to separate u(t) into the ILC- and RFC-related
terms so that disturbances specific to a current
run would have minimal effect on the next run.

4.1 Model Formulation

Suppose that the system dynamics are repre-
sented by

x(t + 1) = Ax(t) + Bu(t) + Kv(t) (12)

y(t) = Cx(t) + v(t)

In (12), v(t) is a zero-mean independent, identi-
cally distributed (i.i.d.) sequence in time but vk(t)
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for different k’s may show correlation. In fact,
vk(t) may even exhibit drifting behavior along k
and not just random fluctuations around a sta-
tionary mean. Such behavior can be reasonably
described by the equation

v̄k = v̄k−1(t) + nk(t)
vk(t) = v̄k(t) + v̂k(t) (13)

where v̂k(t) and nk(t) are zero-mean i.i.d. se-
quences with respect to both k and t. Such a
model can be obtained through system identi-
fication techniques like N4SID (Overschee and
Moor, 1994), as will be demonstrated later.

Now, using the superposition principle, we decom-
pose uk(t) into ūk(t) (the ILC input) and ûk(t)
(the RFC input), and also separate (12) into two
parts, one that is driven by ūk(t) and v̄k(t), and
the other by ûk(t) and v̂k(t) as follows:

x̄k(t + 1) = Ax̄k(t) + B∆ūk(t) + Knk(t)
ȳk(t) = Cx̄k(t) + ȳk−1(t) + nk(t) (14)

x̂k(t + 1) = Ax̂k(t) + Bûk(t) + Kv̂k(t)
ŷk(t) = Cx̂k(t) + v̂k(t) (15)

where ∆ūk � ūk − ūk−1. Naturally, we have

yk(t) = ȳk(t) + ŷk(t) (16)

4.2 Algorithm

The Q-ILC algorithm follows the following steps:

(1) Information Gathering: After the k−1th run,
{ek−1(t), ūk−1(t), ûk−1(t)} are available.

(2) ILC Signal Computation: Before starting the
kth run, compute ūk(t), t ∈ [0, · · · , N − 1]
off-line according to a chosen cost function
involving ēk|k−1(t).

(3) RFC Signal Computation: At each t during
the kth run, calculate ûk(t) such that the
predicted error for the current run is mini-
mized. Then, apply uk(t) = ūk(t) + ûk(t) to
the process.

4.2.1. Details of the ILC Signal Computation
Define

ē �
[
ē(1)T ē(2)T · · · ē(N)T

]T
(17)

∆ū �
[
∆ū(0)T ∆ū(1)T · · · ∆ū(N − 1)T

]T

and similarly for other variables where ē � r − ȳ.
Expanding equations (14) and (15) gives

ēk = ēk−1 − G∆ūk + wk (18)

ek = ēk − Gûk + mk

where

G �

⎡
⎢⎢⎢⎣

CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB

⎤
⎥⎥⎥⎦ (19)

wk+1 and mk are appropriately defined signals
that are independent in k.

∆ūk is determined according to

min
∆ūk

1
2

{‖ēk|k−1‖2
Q + ‖∆ūk‖2

R

}
(20)

where ēk|k−1 is the optimal prediction of ēk based
on the information available at the start of the kth

run, which is given by the Kalman filter applied
to (18). The unconstrained solution to (20) is

∆ūk = Hēk−1|k−1

= (GT QG + R)−1GT Qēk−1|k−1
(21)

The Kalman filter estimates ēk−1|k−1 is computed
as
ēk−1|k−1 = ēk−1|k−2 + K(ek−1 + Gûk−1 − ēk−1|k−2)

ēk|k−1 = ēk−1|k−1 − G∆ūk

(22)
where K is the optimal gain matrix computed
using the model of (18).

4.2.2. Details of RFC Signal Calculation For
the calculation of RFC signal, it is tempting to
think that one should use (15) to control just
the ŷ component of y. However, it turns out to
be beneficial to try to reduce the entire error in
y as it helps to achieve faster convergence. It is
convenient to consider a model with the input
∆ūk(t) term taken out from the model. For this,
we consider the following deterministic model that
represents the output by ∆ūk(t)

ak(t + 1) = Aak(t) + B∆ūk(t) (23)

ya,k(t) = Cak(t)

Subtracting (23) from (14) eliminates ∆ūk(t) from
the equation:

x̄a,k(t + 1) = Ax̄a,k(t) + Knk(t) (24)

ȳk(t) = Cx̄a,k(t) − Cak(t) + ȳk−1(t) + nk(t)

We replace ȳk−1(t) with ȳk−1|k−1(t) which is given
by (22). Combining (15) and (24) yields

[
x̂k(t + 1)

x̄a,k(t + 1)

]
=

[
A 0
0 A

] [
x̂k(t)

x̄a,k(t)

]
+

[
B
0

]
ûk(t)

+
[

Kv̂k(t)
Knk(t)

]

yk(t) + Cak(t) − ȳk−1|k−1(t)

=
[
C C

] [
x̂k(t)

x̄a,k(t)

]
+ v̂k(t) + nk(t)

(25)
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Denote the above as

zk(t + 1) = Φzk(t) + Γûk(t) + ζk(t) (26)

yk(t) + Cak(t) − ȳk−1|k−1(t) = Σzk(t) + ηk(t)

Then, ûk(t) is determined based on the quadratic
criterion

min
ûk(·)

E
{
‖ek(N)‖2

M +
N−1∑
t=0

‖ek(t)‖2
Q + ‖ûk(t)‖2

R

}

subject to (26) (27)

Enforcing ek(t) → 0 is equivalent to steering
yk(t) + Cak(t) − ȳk−1|k−1(t) to r(t) + Cak(t) −
ȳk−1|k−1(t). (27) is a standard LQ servo problem
for the output of (26) to follow r(t) + Cak(t) −
ȳk−1|k−1(t). The solution is standard and given in
the following form:

ûk(t) = −Lfb(t)zk(t|t) + Lff(t)bk(t)
→ uk(t) = ūk(t) + ûk(t) (28)

Detailed forms of Lfb(t), Lff(t) and bk(t) can be
found in textbooks like (Lewis and Syrmos, 1995),
or in (Lee et al., 2001b).

5. RESULTS OF APPLICATION TO AN
EXPERIMENTAL RTP SYSTEM

The previously described Q-ILC algorithm was
applied to the experimental RTP system intro-
duced earlier. The length for each experimental
run was 40 seconds and the sampling time was
chosen as 0.5 second. The reference temperature
trajectory was comprised of a holding zone at
400oC for 7 seconds and a ramping zone with
30oC/sec followed by another holding zone at
700oC for 25 seconds. Control of the wafer temper-
ature for the first run was carried out using the
regular MPC and then Q-ILC was applied from
the 2nd run on.

5.1 Model Identification

The identification experiments were conducted
while maintaining the wafer temperatures at
around 650oC. Independent PRBSs were simulta-
neously added for 2,000 seconds to the respective
steady state input values of the 10 lamp groups
and the resulting temperature responses at the
eight locations were taken. Suitable choice for the
minimum clock period of the PRBS signals was
found to be 15 seconds.

Examining the radiative heat transfer terms leads
us to consider that an RTP system would be
better represented by a linear dynamic model that
relates u(t) to T 4

w(t), rather to Tw(t) as previously
done in (Lee et al., 2001b) and (Lee et al., 2003).

Here Tw represents a vector containing the wafer
temperatures at the eight locations. A linear dy-
namic model between u(t) and y(t) � T 4

w(t)
can be obtained using a standard identification
method, e.g., N4SID (Overschee and Moor, 1994).
To remove the bias effect (‘trend’), we pretreated
the input and output data using a difference filter
of F (q−1) = 1−q−1

1−fq−1 , 0 ≤ f < 1. We chose
f = 0.974. Let the filtered variables be

uf (t) � F (q−1)u(t), yf (t) � F (q−1)y(t) (29)

Processing {uf (t)} and {yf (t)} using N4SID
yields a linear stochastic state space model in the
following innovation form:

xr
f (t + 1) = Āxr

f (t) + B̄uf (t) + K̄v(t) (30)

yf (t) = C̄xr
f (t) + v(t)

where {v(t)} is a zero-mean i.i.d. sequence referred
to as the innovations. (30) can be rewritten in
terms of the original input and output as follows:

[
xr(t + 1)
xd(t + 1)

]
=

[
Ā K̄
0 I

][
xr(t)
xd(t)

]
+

[
B
0

]
u(t)+

[
K̄

(1 − f)I

]
v(t)

y(t) =
[
C̄ I

] [
xr(t)
xd(t)

]
+ v(t) (31)

Note that this model is in the form of (12),
which was the basis for the Q-ILC algorithm
development.

5.2 Results and Discussion

The result of applying the Q-ILC algorithm to the
8 × 10 system with T 4

w as the output is shown
in Table 2. The tracking error is continuously
decreased with the run number and converges
approximately after 7 runs. The temperature gap
given in the table is defined as the maximum
difference among the eight temperatures. This was
reduced down to 5oC in the constant temperature
region.

One of the main feature of the observer based Q-
ILC algorithm is that batch-specific disturbances
are filtered out to have minimal effect on the
learning for subsequent runs. To demonstrate this,
we lowered the initial wafer temperature to 370oC
in the 8th run and then returned it to the nominal
value in the following run. From the results in
Table 1, we can see that the performance of the
7th run is almost completely restored in the 9th
run. Though not shown, it was observed that the
ILC input for the 9th run was hardly affected by
the disturbance that occurred during the 8th run.

In Table 2, the temperature from T 4
w model-based

control is compared with that of the conventional
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linear model-based control where y(t) � Tw(t).
We can see that the temperature uniformity could
be remarkably improved by the use of T 4

w as the
output of the control model. Note that the tem-
perature gap was reduced significantly on the av-
erage. This shows that such simple process knowl-
edge can be a huge factor if used appropriately.

We also attempted to limit the measurements to
three locations, leading to a 3×10 system. The
three measurement locations were decided to min-
imize the estimation error covariance. For com-
parison, we show in Table 3. the results when only
the three temperatures were controlled. The three
controlled points could achieve excellent tracking
and regulation, but the temperature gap among
the eight points, which were just monitored, was
observed to be quite large. As an alternative,
we decided to estimate the temperatures of the
remaining five points based on the three measured
temperatures. Linear estimation was employed for
simplicity. The estimated temperatures along with
the measured ones were used as if they were all
measured, as in the 8 × 10 system case. Perfor-
mance similar to that for the full measurement
case could be achieved, as can be seen from Ta-
ble 4.

6. RELATED TECHNIQUES

There are several techniques in the literature that
share strong similarities with ILC. For example,
repetitive control is a technique applied to a
continuous system with periodic characteristics,
which are also seen in repeated batch runs and
thus form a basis for ILC. Given such strong
similarities, cross-breeding of the techniques from
these fields should be possible. Here we briefly
review the related techniques and discuss whether
they provide any new insight into ILC and vice
versa.

6.1 Run-to-Run Control

Run-to-run control is a popular method to control
product qualities in processes where direct in-situ
measurements of the quality variables are imprac-
tical and off-line product analysis results must be
utilized instead. Such processes are common in
semi-conductor and polymer manufacturing. The
basic form of linear model used for run-to-run
control is

qk = Mpk +
1

1 − q−1
vk (32)

where qk is the vector containing the end quality
variables, pk is the vector containing the recipe
parameters, and vk is an i.i.d. sequence. Here,
the disturbance is modeled as an integrated white

noise to account for jumps and slow drifts. Other
disturbance models such as 1−αq−1

1−q−1 or double in-
tegrators can be used if deemed more appropriate.

The optimal prediction model for (32) is expressed
as

qk|k−1 = qk−1 + M∆pk + vk (33)
and ∆pk representing the recipe adjustment can
be computed by minimizing ‖r − qk‖2

P or ‖r −
qk‖2

P + ‖∆pk‖2
Q as before where r represents the

desired quality values. Of course, nonlinear recipe
models can be used, which may or may not be
combined with a nonlinear state observer.

Examining the above, we see that there is little
difference between ILC and run-to-run control ex-
cept that the former addresses trajectory tracking
problems whereas the latter addresses end quality
control problems. This similarity was noticed by
Chin et al. (2000), who combined ILC and run-
to-run control concepts into an integrated tech-
nique called QBMPC intended for simultaneous
trajectory tracking and end quality control. An
added feature of QBMPC was that the end qual-
ity variables for an on-going batch run could be
inferred from the on-line process measurements,
thereby giving the controller the capability to
make more immediate adjustment with respect to
disturbances.

6.2 Batch-to-Batch Optimization

Batch-to-batch optimization (BBO) refers to the
use of nonlinear programming technique on a real
batch process. The key is to evaluate the objec-
tive function with actual process measurements
rather than a model. The idea was once called
EVOP (EVolutionary OPtimization) (Wilde and
Beightler, 1967) and popular in the 60’s in opti-
mizing operating conditions in the process indus-
tries. The technique was recently brought back
to the attention of the process control commu-
nity by a number of researchers, mostly in the
context of optimizing semiconductor manufactur-
ing processes(Zafiriou and Zhu, 1990; Zafiriou et
al., 1995).

Consider an optimization problem

min
u

φ(y,u) (34)

Suppose the batch process’s dynamics are repre-
sented by the nonlinear input/output map, y =
N (u,d), where d is a disturbance trajectory.
Based on the model, the optimization may be
recast as

min
u

J(u) (= φ(y,u)) (35)

In the above, J can be evaluated through φ where
y is provided by the prediction model
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yk+1|k = yk +
(

∂N
∂u

)
k

∆uk+1 (36)

Note that the actual process measurements of yk

is used, which provides some robustness when the
dynamic map N and the disturbance d are not
perfectly known.

A general search algorithm for u can be written
as

uk+1 = uk + αkgk (37)

where g represents a search direction. From

J(uk+1) ≈ J(uk) + ∇J(uk)T (uk+1 − uk)
= J(uk) + αk∇J(uk)T gk

(38)

it can be seen that J(uk+1) < J(uk) for a
sufficiently small αk as long as gk is given such
that ∇J(uk)T gk < 0. In the steepest descent
algorithm, gk is given by −∇J̃(uk), where J̃
represents φ evaluated with the prediction model
(36). Alternatively, one can also solve for ∆u
minimizing the objective function φ. Note that
a significant model error can be allowed in J
(or equivalently in N ) before the convergence is
violated.

From the use of (36), it is easy to see that the
above described BBO is very closely related to
ILC. In fact, the standard ILC can be interpreted
as a special case of BBO where the objective
function φ(y,u) is quadratic in the tracking error
and the input change and the underlying dynamic
input-output map is linear. Hence, the BBO ap-
proach provides a natural extension of the stan-
dard ILC to the case of nonlinear model.

In Bonvin et al. (2001), BBO methods are clas-
sified into four categories according to how the
model information is used. In their paper, the
term BBO is used in a wider sense to include
a model-based method with recursive identifica-
tion, and reference-based and data-based model-
free methods. The BBO method described in
the above belongs to the (uncertain) fixed-model-
based method according to the classification. In
addition, they proposed a special BBO method
called invariant-based optimization where some
invariant structure of the input profile is deter-
mined first off-line using a coarse process model,
the input is parameterized based on the invariant
structure, and the true invariants are found using
the process measurements.

6.3 Repetitive Control

Repetitive control (RC) is a control technique
for canceling a periodic disturbance or tracking a

periodic reference signal in a continuous process.
Repetitive controllers are originally constructed
using a delay loop based on the internal model
principle(Hara et al., 1988). However, the parallel
with the ILC is clear that the error trajectory
tends to repeat from cycle to cycle. The main
difference is that, unlike in batch systems, the
system state is not reset at the beginning. In the
ILC literature, such a case is referred by the name
of no-reset ILC, which is a new branch of study
in ILC(Sison and Chong, 1996). In no-reset ILC,
transient effect of previous cycles carried over is
not taken into account and is simply left to die
out with cycles.

Lee et al. (2001a) noted the similarity between the
two problems and proposed an MPC technique
called RMPC (Repetitive MPC), which is based
on a periodically varying system description and
has a strong parallel to Q-ILC. The RMPC tech-
nique was successfully applied to the control of a
simulated bed chromatography system(Natarajan
and Lee, 2000; Erdem et al., 2004). More recently,
Lee and Gupta (2005) proposed an extension of
this to add robustness to mismatch in the period
length. The robustness is achieved by penalizing
the input change in a higher order difference form.
Though the period mismatch is an important issue
for batch processes as well, it is not clear how the
idea would extend to the batch system case.

7. CONCLUSIONS

7.1 Summary

Iterative Learning Control (ILC) has great po-
tentials for improving tracking control in batch
processes. Though initially developed as a heuris-
tic method for improving trajectory tracking per-
formance of robot manipulators, two decades of
research has laid solid theoretical foundations and
generated insights needed for successful use in
general tracking problems in batch processes. In
particular, model-based algorithms like Q-ILC can
address complex multivariable constrained sys-
tems and can be designed for significant robust-
ness to model errors. We demonstrated the po-
tentials and subtle challenges by presenting a case
study involving an experimental RTP system. As
turned out, one can effectively solve what ap-
peared to be a very difficult multivariable, non-
linear tracking problem by combining the model-
based ILC technique with some sound engineering
judgment and creativity.

7.2 Future Research Directions

An important assumption behind all current ILC
algorithms is that the run length is fixed and the
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reference trajectory remains same. In many indus-
trial batch processes, however, this assumption is
oftentimes violated. Even though each batch run
may slightly different, the basic pattern of the tra-
jectory, such as hold-ramp-hold may not change.
The main question is how one can translate the
error trajectory from previous batch runs into an
error trajectory for a new run, which may have a
different length and reference trajectory.

Another important issue is more systematic ac-
counting for model errors in the ILC design. In
particular, when the model error can be described
quantitatively such as polytopic bounds for the
dynamic gain matrix, we would like to be able
to use such information directly in the design.
Because the batch system can be viewed as a
simple integrating system along the batch index,
derivation of robust ILC algorithms using the
usual formulation like min-max optimization may
prove to be more tractable. Some initial ideas
along this direction can be found in Lee et al.
(2000).

Finally, the use of a nonlinear model within the
existing ILC algorithms has been studied exten-
sively but it is beyond the scope of this paper.
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Table 1: Performance of full-order Q-ILC. After
7 runs, the profiles converged. The initial wafer
temperature, T0 was dropped to 370oC in the
8th Run and then returned to 400oC in the next
run. (Temperature gap is defined to be the largest

difference among the 8 temperatures. Mean square
error here means 1

8

∑8
i=1(yi(t) − r)2. For both,

‘Max’ and ‘Min’ entries represent the maximum
and minimum values over the course of a run.
‘Mean’ entry represents the average over time.)

Temperature Gap Mean Square Error
Run Max. Min. Mean Max. Min. Mean
1st 41.35 4.357 22.35 8250 2.170 3136
3rd 17.49 4.707 10.97 563.8 3.739 77.29
7th 8.116 1.893 4.968 91.80 1.667 14.97
8th 9.880 4.429 7.030 880.5 2.433 97.62
9th 7.613 4.189 6.265 95.20 1.821 7.374

Table 2: Comparison of the gap temperature
between Tω-model-based and T 4

ω-model-based Q-
ILC.

Temperature Gap
Model Max. Min. Mean

Tω 12.02 5.371 7.740
T 4

ω 8.116 1.893 4.968

Table 3: Performance of Q-ILC with 3 point
measurements and 3 point control. Results for
(a) three controlled points and (b) 8 monitored
points.

Temperature Gap Mean Square Error
7thRun Max. Min. Mean Max. Min. Mean

(a) 7.840 0.110 1.625 197.9 0.032 7.890
(b) 27.53 14.90 20.29 437.8 39.99 102.3

Table 4:Performance of Q-ILC with 3 point mea-
surements and 8 point control under explicit in-
ference of the unmeasured temperatures with dif-
ferent initial temperature,T0.
8th Run Temp Gap Mean Square Error
T0/

oC Max. Min. Mean Max. Min. Mean
350 10.96 5.553 7.776 2463 4.354 256.5
400 12.87 6.282 8.903 106.2 5.450 22.97
450 15.86 6.702 9.509 2516 4.601 422.1
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