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Abstract: Virtually every real process is a nonlinear system. Nevertheless, linear system
analysis and linear controller design methods have proven to be adequate in many
applications. On the other hand, there are nonlinear processes that require or benefit from
nonlinear control. Therefore, recognizing a system as being nonlinear does not suffice,
but the extent and severity of a system’s inherent nonlinearity is the crucial characteristic
in order to decide whether linear system analysis and controller synthesis methods are
adequate. The introduction of nonlinearity measures is an attempt to systematically
approach this problem. In this contribution, we review existing approaches to nonlinearity
assessment, we state the most important results and we give a glance ahead to what might
be expected from this field in the future. Copyright © 2006 IFAC
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1. INTRODUCTION

Linear techniques for systems analysis and controller
design are well developed. For many control-related
engineering problems, methods are available that
are theoretically sound as well as practically imple-
mentable. Due to the diverse qualitative behaviour of
nonlinear systems, tools for nonlinear systems anal-
ysis and control will probably never reach the same
level of generality. To cope with nonlinear control
problems, there are two alternative approaches. For
highly nonlinear systems, special methods have to be
developed that rely upon certain physical properties of
the application or upon mathematical properties of a
certain system class, like energy-shaping methods for
mechanical control systems or feedback linearization.
For mildly nonlinear systems, one can attempt to use
a linear model and linear controller design methods,
hoping that the nonlinear distortion is not large enough
to destabilize destabilize the closed-loop system or to
deteriorate closed-loop performance.

However, there are no mathematical definitions of
“mildly nonlinear” and “highly nonlinear” process be-
haviour, and it is often difficult to decide whether a
control problem at hand is a candidate for the appli-
cation of linear or nonlinear controller design tech-
niques. The area of quantitative nonlinearity assess-
ment aims at filling that gap by deriving systematic
methods to evaluate the degree of nonlinearity inher-
ent to a plant, and its impact on the control design task.
In particular it is of interest to ask the questions

(1) How good can a linear model for a given nonlin-
ear process be?

(2) How good can a linear controller for a given
nonlinear process be?

(3) How can a suitable linear controller for a given
nonlinear process actually be designed?

The aim of this paper is to introduce the field of
nonlinearity assessment and to present recent devel-
opments. To this end, we first give a brief overview
on existing approaches to nonlinearity assessment in
Section 2. Giving a comprehensive treatment of some
well-known facts and some recent results, we then
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study questions (1) and (3) in greater detail. Some
approaches to answer question (2) can be found in
(Stack and Doyle III, 1997b; Schweickhardt et al.,
2003; Shastri et al., 2004). In Section 3 we introduce
nonlinearity measures as a means to quantify the best
achievable quality of a linear model for a nonlin-
ear process. We review the properties of nonlinear-
ity measures and discuss ways to compute the values
of nonlinearity measures for practical systems. The
material of this Section also provides a basis for the
subsequent presentation. In Section 4 an approach is
presented that integrates nonlinearity assessment and
the design of linear controllers for nonlinear systems
based on linear robust control techniques and based
on the nonlinearity measures introduced earlier. The
paper concludes with Section 5.

2. A LITERATURE REVIEW

Nonlinearity measures appeared for the first time in
(Desoer and Wang, 1980), where the induced gain
of the difference between a nonlinear system and its
best linear model is considered. This viewpoint is also
adopted in (Allgöwer, 1995) and will be considered
in greater detail in Section 3. The basic idea of this
approach is to consider the input/output-behaviour of
a system, and how closely it can be reproduced by
linear models. In (Desoer and Wang, 1980) also the
norm of the error signal itself is proposed as a nonlin-
earity measure and in (Sourlas and Manousiouthakis,
1992; Sourlas and Manousiouthakis, 1998) a method
is given to compute this measure for second order
discrete-time Volterra models with any desired preci-
sion.

The idea of linear modeling for nonlinear systems
is further developed for the discrete-time case in
(Partington and Mäkilä, 2002). System gains for non-
linear systems are defined and an upper bound on
the modeling error

∥∥∥G̃ −G
∥∥∥

i,∞ for discrete-time piece-
wise linear systems is given. In (Mäkilä and Parting-
ton, 2003), the best linear models for discrete-time
bi-gain systems is given with respect to the l∞-norm
and the existence of a best linear model for nonlin-
ear finite impulse response filters is proven. The rel-
ative induced error

∥∥∥G̃ −G
∥∥∥

i,∞ / ‖G‖i,∞ as a measure
of nonlinearity is mentioned. It is also of interest to
study the achievable approximation quality for one
given input only (Mäkilä, 2003; Mäkilä and Parting-
ton, 2004; Mäkilä, 2004). It can be shown that there
are situations in which the best linear model defined
this way is better suited for controller design than
the model obtained by linearization around an equi-
librium (or trajectory) (Mäkilä and Partington, 2004).
A generalization of such a nonlinearity measure to
(continuous-time) batch processes can be found in
(Helbig et al., 2000). It is also possible to consider
not only linear models, but for instance Hammerstein
systems, Wiener systems or Volterra series expan-
sions as models for a general nonlinear system, and to

quantify the suitability of the respective model class
(Menold et al., 1997a; Pearson et al., 1997; Menold
et al., 1997b). A common property of all nonlinearity
measures based on system gains is that they are only
defined for stable systems.

A rather geometric viewpoint is taken in (Guay et
al., 1995; Guay, 1996), where the curvature of the
steady state map is introduced as a measure of non-
linearity. A very interesting result is that two com-
ponents of nonlinearity can be discerned, a tangen-
tial component that can be compensated for by input
transformations and a normal component that can only
be affected by coordinate transformations or feedback.
The curvature measure can be extended to dynamic
systems using Fréchet derivatives of operators (Guay
et al., 1997b; Guay, 1996). Again, these measures can
only be calculated for stable processes.

A third approach is presented by Hahn and Edgar
(2001a; 2001b), who introduce empirical controllabil-
ity and observability Gramians in order to quantify the
degrees of input-to-state and state-to-output nonlinear-
ity respectively.

All approaches so far consider process nonlinearity
as some kind of inherent process property that stands
for itself. On the other hand, nonlinearity assessment,
like robustness analysis, needs further specification in
order to be meaningful. In robustness analysis we want
a certain property (to be specified) of the system to be
robust under a certain type of uncertainty or distur-
bance (to be specified). In a similar way, we have to
specify the task we want to perform in order to decide
whether process nonlinearity is of importance: for the
same process, the tasks of process control, process
design, process monitoring and model or parameter
identification may be affected in very different ways
by the nonlinear behaviour.

So far, only identification of nonlinear systems (see
e.g. (Haber and Unbehauen, 1990; Dobrowiecki and
Schoukens, 2001; Schoukens et al., 2002; Enqvist and
Ljung, 2002; Enqvist and Ljung, 2004)) and control-
relevant nonlinearity assessment have received con-
siderable attention in the literature. The notion of
control-law nonlinearity was introduced by Guay et
al. (1995; 1996). As the inverse process steady-state
map can be used to achieve perfect set-point tracking,
it is analyzed by the curvature measure in order to ob-
tain a measure of control law nonlinearity. Similar to
the open-loop steady-state map curvature measure, the
control-law nonlinearity measure captures only static
effects and is defined only for stable systems. In (Guay
et al., 1997a; Guay, 1996), the approach of the control
law nonlinearity measure is extended to a nonlinear
interaction measure representing a generalization of
the relative gain array (RGA) (Bristol, 1966).

Stack and Doyle III (1997b) emphasize that not only
the plant dynamics and the operating region deter-
mine the control-law nonlinearity analysis, but the
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performance objective plays an important role as well.
Therefore they suggest to measure the nonlinearity of
the optimal controller given by the classical optimal
control theory. The controller structure is not restricted
in advance but only the optimization criterion must
be specified. In order to circumvent the derivation of
the exact solution for the optimal state feedback con-
troller, Stack and Doyle III define the so-called Opti-
mal Control Structure (OCS). By this means, interest-
ing questions can be examined like the dependence of
control-relevant nonlinearity on the set-point and re-
gion of operation (Stack and Doyle III, 1997a), the re-
lation between nonlinearity and controller aggressive-
ness (Stack and Doyle III, 1997b; Hernjak et al., 2002)
and the severity of certain classes of nonlinear be-
haviour (Hernjak et al., 2002). Extensions to mea-
surement feedback have also been made (Stack and
Doyle III, 1997a; Hernjak et al., 2002). This method
is further developed in (Schweickhardt et al., 2003) to
the Optimal Control Law (OCL) nonlinearity measure
that is better suited for numeric treatment and allows
for processes with both stable and unstable modes. A
case study of a chemical reactor is treated in (Shastri
et al., 2004).

The framework of nonlinear internal model control
provides also a basis for control-relevant nonlinearity
assessment. This approach is taken e.g. in (Stack and
Doyle III, 1999; Eker and Nikolaou, 2002; Hernjak et
al., 2003).

Instead of analyzing the nonlinearity numerically in
the whole region of operation, one can attempt to
quantify the sensitivity of the closed loop performance
on process nonlinearity locally at the operating point.
First steps in this direction are presented in (Dier et
al., 2004; Guay and Forbes, 2004; Guay et al., 2005).

3. NONLINEARITY MEASURES AND LINEAR
MODELS FOR NONLINEAR SYSTEMS

In this chapter, we define different nonlinearity mea-
sures, specify some of their properties and discuss
computational schemes to derive numerical values of
the measures.

3.1 Definition and basic properties of nonlinearity
measures

The fundamental setup of the input/output-based non-
linearity measures is depicted in Fig. 1. A general
nonlinear (i.e. not necessarily linear) stable dynamical
system N, described by the transfer operator N : u �→
y = Nu is compared to a linear model G described
by the linear transfer operator G : u �→ ỹ = Gu
that approximates the dynamic behaviour of N. The
signals u, y and ỹ represent input and output trajec-
tories of the systems N and G respectively. Without
loss of generality it is assumed that N0 = 0. The

N

G

+

−

y = Nu

ỹ = Gu
E

e = Nu − Guu

Fig. 1. Setup for comparison of a nonlinear system N
with a linear system G.

error signal e is the difference between the output y
of the nonlinear system and the output ỹ of the linear
system. In order to quantify this error, a signal norm

like ‖e‖p =
(∫ ∞

0
|e(t)|p dt

)1/p
< ∞ for 0 ≤ p < ∞ or

‖e‖∞ = ess supt≥0 |e(t)| < ∞ for p = ∞ (“peak norm”)
will be used, where |·| denotes the Euclidean vector
norm. In the sequel, we will simply write ‖·‖, leav-
ing the type of norm unspecified when any choice is
possible. The required type of stability for the plant N
is always the corresponding (finite-gain) Lp-stability
(Vidyasagar, 2002).

Yet the norm of the error itself, ‖e‖ = ‖Nu −Gu‖ is not
the best quantity to look at, as it heavily depends on
the magnitude of the input. Therefore, for any causal,
Lp-stable system N : U ⊆ Lm

p → Ln
p we define the

error-gain nonlinearity measure of N onU as

γUN
�
= inf

G∈G
sup
u∈U
‖Nu −Gu‖
‖u‖ . (1)

This nonlinearity measure gives the gain of the error
system E (see Fig. 1), when the worst case input signal
u ∈ U is considered. The best linear approximation
G is chosen among the set of all causal stable linear
(convolution) operatorsG such that the resulting worst
case gain is minimized.

As can be seen from its definition, the error-gain
nonlinearity measure γUN depends on the system N
and on the set of considered inputs U. The set U
usually describes the region of operation in which
the nonlinearity of the system N is to be assessed. In
this caseU contains e.g. only signals not exceeding a
certain maximal amplitude.

In Section 4 the error gain nonlinearity measure will
turn out to be useful for controller design. But for anal-
ysis purposes, there are two reasons for the error gain
nonlinearity measure not being the only quantity we
are interested in. Firstly, the measure is not bounded
by definition. For different systems, different values
indicate a “high degree of nonlinearity”. For example,
an additional scalar gain in the I/O-behaviour of a
system changes the error gain nonlinearity measure,
although the type and qualitative behaviour of the non-
linear system do not change. Secondly, the error gain
nonlinearity measure can only be computed for stable
systems in general while we might want to quantify
the degree of nonlinear distortion also for unstable
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systems. Thus, for the analysis of nonlinear systems
we introduce a second quantity.

Let therefore N be as above, but instead of stability we
only require that the system does not exhibit a finite
escape time (i.e. ‖(Nu)T ‖ < ∞ for all T > 0 and
u ∈ U). We define the relative nonlinearity measure
of N onU by

ϕUN
�
= inf

G∈G
sup
u∈U

lim sup
T→∞

‖(Nu −Gu)T‖
‖(Nu)T ‖ (2)

where the definitions of G and U are as above. An
important property of the measure ϕUN is that its value
is bounded by one (Allgöwer, 1995), a value close
to one corresponding to a highly nonlinear system.
We can thus compare the degree of nonlinearity of
different systems on a unified scale. The value of
ϕUN corresponds to the percent-wise deviation of the
output of the best linear approximation G from the
output of the nonlinear system N.

There are two more properties that both nonlinear-
ity measures have in common. Firstly, if the mea-
sures are zero then the I/O-behaviour of the system
N can exactly be reproduced by a linear system for
the considered inputs, and N is said to be linear in
U. Conversely, if N is linear, then the best linear
approximation is G = N and thus the nonlinearity
measures vanish. Secondly, it has already been said
that U can characterize the region of operation. Note
that the nonlinearity measure can not decrease when
additional inputs are considered (when U is made
bigger). This fact is mathematically expressed by

U1 ⊆ U2 ⇒ γUN ≤ γUN (3)

and the equivalent relationship holds for ϕUN . The prac-
tical meaning is intuitively clear: if a larger operating
regime is considered, the nonlinearity measure will
increase or stay constant, but will not decrease. But
U can have other significances as well. In Sec. ?? we
discuss how U can reflect the effect of feedback for
control-relevant nonlinearity characterization.

3.2 Nonlinearity measures and steady-state behaviour
of nonlinear systems

In this section we consider the evaluation of nonlin-
earity measures based on the steady-state behaviour
of nonlinear dynamic systems. Therefore, we assume
that the system under consideration has a unique
steady state for all inputs in the considered operating
regime. The steady-state locus is a (static) function
that maps the steady-state inputs to the steady-state
outputs. In order to make statements about the non-
linearity measures of dynamic systems based on their
steady-state locus, we first have to obtain results for
nonlinearity measures of (static) functions.

To this end, we consider memoryless systems of the
form

Nf : u �→ y : y(t) = f (u(t)) ∀t (4)

where f : V → �n is a function satisfying | f (v)| < ∞
for all v ∈ V. Here, the setV ⊆ �m determines the set
of allowed input values (i.e. the region of operation),
that is we define U = {u ∈ Lm

p |u(t) ∈ V∀t}. We then
have the following equivalences

γUNf
= inf

K∈�n×m
sup
v∈V
| f (v) − Kv|
|v| (5)

ϕUNf
= inf

K∈�n×m
sup
v∈V
| f (v) − Kv|
| f (v)| . (6)

Note that this equality holds regardless of the norm
used, i.e. for all p ∈ [1,∞], and the value of the
nonlinearity gain of Nf does not depend on p for our
definition of the Lp-norms. The above equalities have
the following significance:

(1) When we want a linear model for a memoryless
nonlinear system, a dynamic linear model has
no advantage over a memoryless linear system
(which is a gain matrix).

(2) Instead of a signal set U, we only need to con-
sider the maximum over a set of real numbers (or
vectors) V. We thus end up with a much easier
optimization problem.

The computation of the measure for static functions
can be done analogously to the procedure described
in (Allgöwer, 1995). We therefore discretize the setV
that describes the operating regime in terms of admis-
sible values for the input signals. We then calculate
the corresponding steady-state responses. This way,
a finite number of points (uS S ,i, yS S ,i) on the steady
state locus are obtained. Then we have to solve the
optimization problem

γUNf
= min

z∈�,K∈�n×m
z

s.t.

∣∣∣yS S ,i − KuS S ,i

∣∣∣∣∣∣uS S ,i

∣∣∣ − z ≤ 0 ∀i

where uS S ,i in the denominator must be replaced by
yS S ,i for the calculation of ϕUNf

.

In the case of a scalar function f : � → � the
nonlinearity measures of memoryless systems can be
obtained even simpler by using the sector bounds on f .
Consider therefore a function f that lies in the sector
[k−, k+] for all v ∈ V, but may lie outside for v � V
(see Fig. 2 withV an interval on the v-axis). It can be
seen that the slopes of the straight lines that bound the
sector are given by

k+ = sup
v∈V\{0}

f (v)
v

and k− = inf
v∈V\{0}

f (v)
v
.
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v̄v v

f(v) k+v

k−v

Fig. 2. A nonlinear function and its sector bounds for
V = [v, ¯v].

Given this information, we can determine the error
gain nonlinearity measure by

γUNf
=

⎧⎪⎪⎨⎪⎪⎩
1
2

(
k+ − k−

)
if

∣∣∣k+∣∣∣ , ∣∣∣k−∣∣∣ < ∞
∞ else

and the best linear model is the straight line with slope
k∗ = 1

2 (k+ + k−) if γUNf
is finite. In a similar way we

get

ϕVNf
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣∣∣∣k
+ − k−

k+ + k−

∣∣∣∣∣ if 0 < k+k−,
∣∣∣k+∣∣∣ , ∣∣∣k−∣∣∣ < ∞

0 if k+ = k− = 0
1 else

for the relative nonlinearity measure and the best
linear model with respect to the latter is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
k∗
=

1
2

(
1
k+
+

1
k−

)
if 0 < k+k−,

∣∣∣k+∣∣∣ , ∣∣∣k−∣∣∣ < ∞
k∗ = 0 else.

Now let us assume we have calculated the nonlinear-
ity measure of the steady-state locus. Recall that we
assumed that the steady-state response is unique, i.e.
y(t) = (Nu)(t) → f (v) whenever u(t) → v for t →
∞. Then, the nonlinearity measures of the (dynamic)
plants are bounded below by the respective quantities
of the steady-state locus:

γU(V)
N ≥ γVNf

and ϕU(V)
N ≥ ϕVNf

.

Proofs of the facts given in this section can be found
in (Schweickhardt and Allgöwer, 2005). Next, we turn
our attention to the computation of the nonlinearity
measure for general dynamic systems.

3.3 Computation of nonlinearity measures

In the literature, different schemes can be found to
approximately compute the nonlinearity measure. A

lower bound can be calculated by considering only
harmonic input signals (Allgöwer, 1995). Approxi-
mate computational scheme are given in (Allgöwer,
1996) for the general case, and in (Sourlas and
Manousiouthakis, 1992; Sourlas and Manousiouthakis,
1998) an approach to derive a value for the absolute
measure from (Desoer and Wang, 1980) is developed
for a class of discrete-time systems. In (Kihas and
Marquez, 2004) a quantity very similar to nonlinear-
ity measures is considered. A procedure is proposed
to approximately compute the L2-gain of the error
system defined as the difference between a nonlinear
system and its Jacobi-linearization (both in continuous
time). To this end, a Hamilton-Jacobi inequality is
approximated at a finite number of points in a given
region of the state space. Then the input-to-state- and
L∞-gain of the nonlinear process and its linearization
respectively are calculated in order to estimate an up-
per bound on ‖u‖ that guarantees that the system re-
mains in the given region of the state-space. For all ap-
proaches, the most difficult part in obtaining accurate
values for the nonlinearity measure is the computation
of gains (Nikolaou and Manousiouthakis, 1989; Choi
and Manousiouthakis, 2000; van der Schaft, 2000).
Nonetheless, the mentioned approximation proce-
dures often give sufficiently accurate results. We will
not go into further detail but concentrate on the main
ideas of nonlinearity assessment.

4. LINEAR CONTROL OF NONLINEAR
SYSTEMS – A SMALL GAIN APPROACH

Once we have decided that linear controller design is
adequate for the nonlinear control problem at hand, we
turn the attention to the design of a suitable controller.
The usual approach to the design of linear controllers
for nonlinear systems is to use the linearization around
the operating point as a linear model, design a linear
controller and analyze (e.g. by simulation) the stability
and performance of the closed loop with the nonlinear
plant. By this method, no stability and performance
guarantees can be made and the degree of nonlinearity
of the plant is not taken into account in the controller
design step. In this Section, a novel approach is pre-
sented that integrates nonlinearity analysis and linear
controller design for nonlinear systems in order to

(1) decide for a given control problem whether linear
controller design is adequate,

(2) derive a suitable linear model (not necessarily
equivalent to the local linearization)

(3) describe a linear controller design procedure that
guarantees stability (and possibly performance)
of the closed loop containing the nonlinear pro-
cess.

The suggested method in this Section will deal
with stable nonlinear systems exhibiting a finite gain
γ(N) := supu

‖Nu‖
‖u‖ . The idea is to use the small gain

theorem in order to maintain stability despite a non-
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(a) Linear closed loop with nonlinear uncertainty
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(b) Reformulation for use with small gain theorem

Fig. 3. Formulation of the nonlinear control problem
as linear control problem with norm bounded
nonlinear uncertainty.

linear uncertainty (for the small gain theorem, see
e.g. (Vidyasagar, 2002)). With the help of the small
gain theorem, a controller C that satisfies γ(N)γ(C) <
1, where N is the plant, will achieve closed loop sta-
bility, see Fig. 3 (a). While stability can be achieved
this way, it remains unclear how performance require-
ments can be met and how the controller should look
like apart from the requirement γ(C) < γ(N)−1. In
particular, this approach excludes controllers with in-
tegral action as the controller has to be stable itself.
To circumvent these problems, a different approach is
taken. We therefore split the nonlinear system N into
a (stable) linear part P and a (stable) nonlinear part
∆ = N − P and use linear techniques to design a (not
necessarily stable) linear controller C for the linear
part P.

With the help of the loop transformation theorem
(Vidyasagar, 2002, Ch. 6), we can reorder the closed
loop as depicted in Fig. 3 (b). Now, let the linear closed
loop transfer operator be M = CS = C(I+PC)−1. The
small gain theorem then states that if the gains of M
and ∆ satisfy

γ(∆)γ(M) < 1

the closed loop system is stable. Moreover, the linear
controller can be designed such that the performance
requirements are met at least for the linear model P
and integral action is possible. In order to get the best
results, the linear model must be chosen such that
the gain of the model uncertainty γ(∆) takes the least
possible value. This is achieved by choosing P such
that γ(∆) = γ(N −P) is minimized. But this procedure

exactly corresponds to the definition of the error gain
nonlinearity measure γUN = infG γ(N − P). We call a
model P∗ with γ(N − P∗) = γUN the best linear model.
Whenever no such P∗ exists we choose a P̃∗ for which
γ(N − P̃∗) ≈ γUN . The nonlinearity assessment then
consists of (i) computing γUN and P∗ and (ii) check
with linear H∞-techniques whether γ(M) < 1/γUN
is achievable. If so, P∗ gives a suitable linear model
and linear controller design can be done to optimize
customized performance objectives. In principal, any
controller design method can be utilized as long as the
constraint γUN γ(M) < 1 is guaranteed to be satisfied.

We will illustrate the presented approach with a small
example. Consider the system

ẏ = −y − y3 + u

in the operating range |u(t)| < 2∀t. Using the steady-
state locus, which is easy to compute, and using the
formulas given in Section 3, we can immediately give
the lower bound of γUN ≥ 0.25 for the nonlinearity
measure. Indeed, the numeric computations of the
dynamic nonlinearity measure results in a value of
0.271. The corresponding best linear approximation is
of order 10 and can be reduced to obtain the model

P∗(s) =
0.040s+ 0.796

s + 1.025

as opposed to the linearization around the steady state
which yields

Plin(s) =
1

s + 1
.

For both models we design a controller such that the
closed loop (with the model) has a first order delay
behaviour with a bandwidth of 3rad/s. As discussed
above the error between the best linear model P∗ and
the true nonlinear process can be taken into consid-
eration and it is guaranteed that the nonlinear closed
loop is stable. This is accomplished by verifying that
for the controller based on the best model P∗ we have
γUN γ(M) = 0.271 · 3.298 = 0.892 < 1. For Plin the
size of the error is not known and therefore no guar-
antees can be given. In fact P∗ is the linear model that
makes the error smallest and thus will give rise to the
lowest conservativeness which, with all due caution,
is related to a better performance. This can also be
seen from the closed loop simulations. In Fig. 4, step
responses of the closed loops containing the nonlin-
ear plant and the controllers based on the best linear
model and based on the local linearization respectively
are plottet.

Due to integral action, both controllers achieve van-
ishing steady state errors. But it can be seen that
for this simple system already the proposed proce-
dure not only guarantees stability, but also leads to
a better performance when compared to the conven-
tional approach. More details on the approach and
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Fig. 4. Responses of the closed loops to steps in the
reference signal of different height. The solid line
corresponds to the controller based on the best
linear model, the dotted line to the controller
based on the local linearization.

more complex worked out examples can be found in
(Schweickhardt and Allgöwer, 2006).

5. CONCLUSIONS

The development of advanced controller design tech-
niques for nonlinear processes requires much effort.
Linear controller design can be implemented much
more easily and fortunately leads to satisfactory re-
sults in many practical situations. Thus, one requires
to have tools in order to determine prior to controller
design whether linear controller design is adequate or
whether nonlinear techniques have to be used. It is
interesting to observe that similar studies are taking
place in the area of empirical modeling, where pro-
cess nonlinearity can obstruct identification of linear
models, or render the identified models obsolete.

In this note, we presented an introduction to recent re-
sults on the input/output-based approach to nonlinear-
ity assessment. Useful formulas to quickly determine
lower bounds of nonlinearity measures based on the
steady-state process behaviour were given. We mo-
tivated the necessity of control-relevant nonlinearity
assessment and introduced the corresponding optimal
control law nonlinearity measure. We then presented a
novel approach that combines nonlinearity assessment
and controller design by using linear robust control
methods and nonlinearity measures. An example was
given that showed the usefulness of the proposed ap-
proach.

In the future, two directions of further investigations
are expected to play an important role. Firstly, it is
desirable to get methods that more precisely quantify
how much performance can be gained by using non-
linear controller design techniques instead of linear
ones. Secondly, the proposed method for linear con-
troller design of nonlinear systems is only a first step.

Many other approaches can be imagined, and once
easily realizable and reliable methods are developed
that also guarantee a certain level of performance they
are expected to have a tremendous impact on process
control practice.
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