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Abstract: This paper addresses the short-term scheduling of chemical process with 

uncertainty considerations. A multiobjective robust optimization method is proposed to 

identify Pareto optimal solutions, where Normal boundary intersection (NBI) technique 

is utilized in order to trace the Pareto optimal surface in the objective space, on which 

each point represents a trade-off between the various objectives. The issue is also 

addressed using parametric mixed integer linear programming (pMILP) analysis where 

uncertain parameters are present on the right hand side (RHS) of the constraints. For the 

case of multiple uncertain parameters, a new algorithm of multiparametric linear 

programming (mpLP) is proposed that does not require the construction of the LP 

tableaus but relies on the comparison between solutions at leaf nodes. Given the range of 

uncertain parameters, the output of this proposed framework is a set of optimal integer 

solutions and their corresponding critical regions and optimal functions.  
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1. INTRODUCTION 

Substantial benefits can be achieved through the use 

of optimization techniques in plant operations by 

improving the resource utilization at different levels 

of decision making process. However, uncertainty 

exists in realistic manufacturing environment due to 

lack of accurate process models and variability of 

process and environment data. The presence of 

uncertainty can substantially reduce or eliminate the 

advantages of optimization approaches. Therefore, it 

is of great importance to develop systematic methods 

to address the problem of uncertainty in process 

operations. 

Although there has been a substantial amount of work 

addressing the problem of design and planning under 

uncertainty, a detailed literature review of which can 

be found in Cheng et al. (2003), the issue of 

uncertainty in scheduling problems has received 

relatively little attention. Existing work mainly 

includes stochastic programming approaches 

involving chance constraints and two-stage 

programming (Bonfill et al., 2005, Jia and 

Ierapetritou, 2004), as well as robust optimization 

methods (Basset et al., 1997; Lin et al., 2004; Vin and 

Ierapetritou, 2001). A brief overview of these 

approaches are presented here. Ierapetritou and 

Pistikopoulos (1996) addressed the scheduling of 

single-stage and multistage multiproduct continuous 

plants with a single production line at each stage 

when uncertainty in product demands is involved. 

They used Gaussian quadrature integration to evaluate 

the expected profit and formulated the problem as a 

MILP models. Lin et al (2004) proposed a robust 

optimization method to address the problem of 

scheduling with uncertain processing times, market 

demands, or prices. The robust optimization model 

was derived from its deterministic model considering 

the worst-case values of the uncertain parameters, and 

a certain infeasibility tolerance was introduced to 

allow constraint violations. Vin and Ierapetritou 

(2001) addressed the problem of multiproduct batch 

plant scheduling under demand uncertainty. They 

introduced a robustness metric based on deviations 

from the expected performance including the 

infeasible scenarios. Robust schedules are generated 

based on a multiperiod approach. Balasubramanian 

and Grossmann (2002) considered uncertain 

processing times in scheduling of multistage flowshop 

plants. They also proposed a multiperiod MILP model 

and proposed a special branch and bound algorithm 

with aggregated probability model to select the 

sequence of jobs with minimum expected makespan. 

Recently, Bonfill et al. (2005) used a two-stage 

stochastic approach to address the robustness in 

scheduling batch processes with uncertain operation 

times. The objective is to minimize a weighted 

combination of the expected makespan and wait 

times. Basset et al. (1997) proposed a framework 

considering uncertainties in processing times, 
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equipment reliability, process yields, demands and 

manpower changes. They generate random instances 

by Monte Carlo sampling, and determine the 

schedules for these instances. The solutions are then 

analyzed to derive a number of operating policies. 

Orcun et al. (1996) presented an approach to deal with 

uncertain processing times in batch processes and 

utilized chance constraints to take into consideration 

the violation of operation time constraints under 

certain conditions. In our earlier work (Jia and 

Ierapetritou, 2004), we developed a branch-and-bound 

solution framework to determine a set of alternative 

schedules for a given range of uncertain parameters. 

The idea of inference based sensitivity analysis for 

MILP problems was employed that has the advantage 

of not substantially increasing the complexity 

compared with the deterministic formulation. 

A number of problems from the area of process 

design and operations are commonly formulated as 

mixed integer linear programming (MILP) problems. 

One way to incorporate uncertainty into these 

problems is using MILP sensitivity analysis and 

parametric programming methods. The main 

limitation of most existing methods is that they can 

only be applied to problems with a single uncertain 

parameter or several uncertain parameters varying in a 

single direction. A number of approaches have been 

developed for parametric integer programming 

problems that involve a single parameter/scalar 

variation, basically including implicit enumeration 

methods (Roodman, 1972; Piper and Zoltners, 1976), 

branch and bound methods (Roodman, 1974}, 

Marsten and Morin (1977), Ohtake and Nishida 

(1985), and cutting plane methods (Holm and Klein, 

1984), Jenkins and Peters, 1987), etc. A detailed 

literature review can be found in Jenkins (1990). 

Jenkins' approach is extended by Crema (2002) for 

the multiparametric 0-1 integer linear programming 

(ILP) problem considering the perturbation of the 

constraint matrix, the objective function and the RHS 

vector. The proposed algorithm iteratively solves a 

nonlinear problem, which can be converted to an 

equivalent MILP formulation, in order to obtain a 

complete multiparametric analysis. 

Acevedo and Pistikopoulos (1997) proposed a 

parametric programming approach for the analysis of 

linear process engineering problems under 

uncertainty. The procedure solves the multiparametric 

linear programming (mpLP) at each node of the B&B 

tree, then compares and identifies the different 

optimal integer solutions and their corresponding 

optimal value functions. Pertsinidis et al. (1998) 

developed an algorithm for MILP sensitivity analysis. 

At each iteration, the LP sensitivity analysis results 

and a cut that excludes the current integer solution are 

incorporated to a MILP problem so as to find the 

breaking point and the successor optimal integer 

solution. Their ideas were extended by Dua and 

Pistikopoulos (2000), by decomposing the mp-MILP 

into two subproblems and then iterating between 

them. The first subproblem is obtained by fixing the 

integer variables, resulting in a mpLP problem, 

whereas the second subproblem is obtained by 

relaxing the parameters as variables, leading to a 

MILP problem. 

The problem of RHS multiparametric linear problem 

was first addressed by Gal and Nedoma (1972). Their 

algorithm is based on the Simplex algorithm for 

deterministic LPs. It starts with an initial optimal 

basis at a feasible point and moves to each of its 

possible neighbor bases by one dual step to determine 

the new optimal solution. This procedure is repeated 

until there is no optimal basis that still has 

unexamined neighbors. A geometric approach is 

proposed by Borrelli et al. (2003), which is based on 

the direct exploration of the parameter space and their 

definition of critical regions is not associated with 

bases but with the set of active constraints. 

Our work towards addressing the problem of 

uncertainty in scheduling has been evolved around 

two different directions based on the variable 

information about uncertainty. For the cases where 

uncertainty is well characterized, robust optimization 

can be used to simultaneously optimize the different 

objectives in the face of uncertainty, such as expected 

profitability, flexibility, robustness. However, when 

there is not enough information, parametric 

programming can be employed to generate a set of 

alternative schedules to cover the whole uncertainty 

space.

This paper is organized as follows. Section 2 presents 

the multiobjective robust optimization model for 

short-term scheduling, whereas the details of the 

proposed parametric MILP approach for the cases of 

single and multiple uncertain parameters are 

presented in section 3. Section 4 is used to present the 

effectiveness of the proposed methods through the 

solution of one case study whereas section 5 

summarizes the work and present some of the ideas 

for future developments. 

2. ROBUST OPTIMIZATION 

A wide variety of problems arising in design and 

operation of engineering systems require 

simultaneous optimization of more than one objective 

function. A solution that optimizes all the objectives 

most likely doesn't exist, thus we need to find out 

solutions that trade-off the different objectives. 

This type of problems are known as multiobjective, 

multicriteria  or vector optimization problems, which 

consist of two or more conflicting objective functions 

with a set of constraints taken into consideration. 

Optimization of these problems is to identify the set 

of Pareto optimal solutions. 

A solution is Pareto optimal if improvement in one 

objective can only be achieved at the expense of some 

other objectives. In mathematical terms, for a general 

multiobjective optimization problem: 
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Classical approaches for MOP are the weighting 

method (1963) and the -constraint method (Haimes, 

1973). Weighting method minimizes a positively 

weighted sum of the individual objectives, where the 

choice of appropriate weighting coefficients is left to 

the users. For this method the objective takes the 

following form: 

i
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0 i 1 2 n, , , ...,

where
i
 are the weights for the different objectives. 

-constraint method (Haimes, 1973)  minimizes a 

primary objective , and constrains the upper 

bounds for the remaining objectives as follows: 
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Hillermeier (1995) proposed a homotopy method that 

considers the set of Pareto candidates as a 

differentiable manifold and constructs a local chart 

which is fitted to the local geometry of that Pareto 

manifold. New Pareto candidates are generated by 

evaluating the local chart numerically. 

The normal boundary intersection (NBI) (Das and 

Dennis, 1998) method uses a geometrically intuitive 

parametrization to produce an even distributed set of 

points on the Pareto surface, even for poorly scaled 

problems. This method is utilized in this chapter to 

generate the Pareto surface of multiobjective 

scheduling problem. The details of this approach are 

provided in section 2.3 after the presentation of 

deterministic and robust scheduling in sections 2.1 

and 2.2, respectively.  

2.1 Deterministic Scheduling Formulation 

In this section, the mathematical model for batch plant 

scheduling proposed by Ierapetritou and Floudas 

(1998) is adopted. It follows the main idea of event 

based continuous time formulation and involves the 

following constraints: 
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In the above formulation, allocation constraints (2) 

state that only one of the tasks can be performed in 

each unit at an event point (n). Constraints (3) 

represent the material balances for each state (s) 

expressing that at each event point (n) the amount sts,n

is equal to that at event point (n-1), adjusted by any 

amounts produced and consumed between event 

points (n-1) and (n), and delivered to the market at 

event point (n). The storage and capacity limitations 

of production units are expressed by constraints (4) 

and (5). Constraints (6) are written to satisfy the 

demands of final products. Constraints (7) to (14) 

represent time limitations due to task duration and 

sequence requirements in the same or different 

production units. Parameters i,j and i,j are defined 

as: i ji j

2
T

3
,,

, )/(
3

2 min
,

max
,,, jijijiji vvT wher jiT ,

is mean processing time of task (i) in unit (j). This is 

based on the assumption that there is 33% variability 

of the processing time around the mean value to 

accommodate different batch sizes, although different 

processing times functions can be easily adapted. 

When wvi,j,n equals to 0, the last two terms in 

constraints (7) are equal to zero due to capacity 

constraints. Otherwise, the last two terms are added to 

Tsi,j,n. Therefore, the duration of task (i) at unit (j) at 

event point (n) depends on the amount of material 

being processed. The remaining timing constraints (8) 

- (14) represent the production recipe constraints and 

should be satisfied to impose the correct task 

sequence. 

There is a lot of discussion in the literature recently 

regarding different modeling attempts of the 

deterministic scheduling problem. Maravelias and 

Grossmann (2003) discussed different time 

representation schemes and proposed a general 

continuous time MILP formulation for the short-term 

scheduling of multipurposes batch plants. In this 

chapter, we select the above presented model since it 

has been shown to perform well for different case 
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studies. However, the approach as presented in this 

paper to address the issue of uncertainty can be 

utilized independent of the scheduling formulation 

adopted. 

2.2 Multiobjective Robust Optimization Model 

In the proposed model, demand uncertainty is 

described by a number of scenarios (k), each of which 

is associated with probability pk. The optimal 

schedule of the deterministic scheduling formulation 

presented in the previous subsection will be robust 

with respect to optimality if it remains close to the 

optimal solution for any realization of scenario k K.

This solution is called solution robust. The schedule is 

also robust with respect to feasibility if it remains 

almost feasible for any realization of k, which is 

called model robust. Our aim is to find robust 

schedules in the face of uncertainty that can help the 

decision maker to select the optimal solution. 

In order to incorporate these two objectives, a 

multiobjective robust optimization formulation is 

proposed, which has the following form for the case 

of uncertain demands: 
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The first objective is minimizing the expected 

makespan, which is derived from the original 

objective in deterministic formulation. Model 

robustness is represented by the second objective that 

minimizes the expected unsatisfied demands, which is 

computed by introducing the artificial variables 

slackk(s) in the demand constraints (20).  

Standard Deviation (SD) is one of the most 

commonly used metrics to evaluate the robustness of 

a schedule. To evaluate the SD, the deterministic 

model with a fixed sequence of tasks wvi,j,n is solved 

for different realizations of uncertain parameters that 

define the set of scenarios k which results in different 

makespans Hk. The SD is then defined as: 
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where Havg is the average makespan over all the 

scenarios, and ptot denotes the total number of 

scenarios. A detailed discussion of different 

robustness metrics can be found in Samsatli et al. 

(1998). Vin and Ierapetritou (2001) proposed a 

robustness metric taking into consideration the 

infeasible scenarios. In case of infeasibility, the 

problem is solved to meet the maximum demand 

possible by incorporating slack variables in the 

demand constraints. Then the inventory of all raw 

materials and intermediates at the end of the schedule 

are used as initial conditions in a new problem with 

the same schedule to satisfy the unmet demand. The 

makespan under infeasibility Hcorr is determined as 

the sum of those two makespans. Their proposed 

robustness metric is defined 

as:
k tot

avgact

corr
P

HH
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1

)( 2

where Hact = Hk, if 

scenario k is feasible and Hact = Hcorr, if scenario k is 

infeasible. The concept of upper partial mean (UPM) 

introduced by Ahmed and Sahinidis is used in the 

third objective function in order to optimize the 

solution robustness. They define the variance measure 

as

follows:
k

kkp
k

kkkk HpH },0max{

where 
k

corresponds to the positive deviation of 

makespan under scenario k from the expected value. 

The main advantage of using UPM instead of 

variance is that it can avoid introducing nonlinearities 

in the formulation. Thus, the resulting model remains 

a mixed-integer linear programming (MILP) problem. 

Comparing to the deterministic problem, in this 

formulation, the binary variables wvi,j,n that represent 

the task sequences remain the same over all scenarios, 

while the continuous variables that correspond to the 

batch sizes, and the starting and finishing times can 

vary to accommodate the realization of different 

scenarios. Thus, the schedules obtained by solving 

this multiobjective optimization problem include 

robust assignments that can accommodate the demand 

uncertainty. 

Note that this robust optimization model is written for 

a general batch plant scheduling problem where the 

objective is to minimize the makespan. However, 

other scheduling problems can have different 
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objectives and constraints. In these cases, the above 

formulation has to be modified to accommodate the 

different objectives. 

2.3 Normal Boundary Intersection 

NBI is a solution methodology developed by Das and 

Dennis (1998) for generating Pareto surface in 

nonlinear multiobjective optimization problems. It is 

proved that this method is independent of the relative 

scales of the objective functions and is successful in 

producing an evenly distributed set of points in the 

Pareto surface given an evenly distributed set of 

parameters, which is an advantage compared to the 

most common multiobjective approaches - weighting 

method and the -constraint method.  

The anchor point Fi*, is obtained when the ith
objective is minimized independently, while fi*

represents the individual minima of the ith objective. 

The shadow minimum (utopia point) F*, is defined as 

the vector containing the individual global minima of 

the objectives, i.e. .
* * * *

1 2[ , ,..., ]T

nF f f f

2.4 Robust Scheduling 

The basic steps of NBI in the context of robust 

production scheduling are as follows: 

Step 1: Determine the anchor points: The robust 

optimization model for scheduling problems as 

presented in section 2.2 has three objectives, which 

are the expected value of makespan, unsatisfied 

demand (model robustness), and the upper partial 

mean of the makespan (solution robustness). In order 

to determine the anchor points, the robust 

optimization formulation is solved with one objective 

function being minimized each time. The expected 

makespan, model robustness, and solution robustness 

is minimized with respect to constraints (16) - (29) 

individually, and the minimum value and the values 

of the other two objectives are saved. Since the 

makespan requirement is imposed through the 

inequality in constraint (27), when the problem is 

solved to minimize the model robustness or solution 

robustness, the makespan that corresponds to each 

scenario Hk obtained may not be equal to the 

finishing time of the last task. Thus, in order to get 

the optimal value of expected makespan at the anchor 

points, if model or solution robustness is optimized 

first, the following step is required. 

Step 2: Tighten the anchor points: When model or 

solution robustness is minimized first, they are fixed 

at the optimal values and the problem of minimizing 

the expected makespan is solved again. Thus, the 

resulting points are the real anchor points that contain 

the optimal value of the expected makespan 

corresponding to the finishing time of the last 

performed task and utopia point F* is correctly 

determined. 

Step 3: Formulate and solve problem (NBI )

iteratively for different values of .

The convex hull of individual minima (CHIM) has 

the following definition: let  be the respective 

minimizer of  for 

*

ix

if (x), i 1, , n x C . Let 

,  be the  matrix 

whose i

* *

i iF F(x ), i 1, , n
*

n n

th column is 
*

iF F . Then the set of points 

in 
nR  that are convex combinations of 

* *

iF F ,

i.e., n

i ii
{ : R , 1, 0}  is referred to 

as the CHIM. The set of attainable objective vectors: 

{F(x) : x C}  is denoted by  so C is mapped onto 

 by F. The space 
nR  which contains  is referred 

to as objective space. The boundary of  is denoted 

by . NBI method determines the portion of 

which contains the Pareto optimal points solving 

problem (NBI ). The principal idea behind this 

approach is that the intersection point between the 

boundary  and the normal pointing towards the 

origin ( ˆtn , where  is a convex weighting) 

emanating from any point in the CHIM (  is a 

point on the portion of   containing the efficient 

points. This point is guaranteed to be a Pareto 

optimal point if the trade-off surface is convex. Each 

of the points represents a trade-off solution between 

the expected performance, feasibility and deviation 

from the mean. 

3. PARAMETRIC MILP APPROACH 

As mentioned in the introduction for the case where 

there is not enough information about uncertainty 

characteristics, parametric MILP can be used to 

generate alternative schedules that can be then 

evaluated in the face of uncertainty. In this section, 

the parametric MILP problem is discussed.  

For the general mixed integer problem: 

cxzmin

subject to        Ax   (P1) 

,0x integer, jx kj ,..,1

Assuming a perturbation of problem RHS parameter 

values such that: Ax

The aim of is to investigate the effect of  on the 

optimal solution x and objective value z.

3.1 Single Uncertain Parameter 

For the case of single uncertain parameter, the 

proposed approach follows the basic ideas of the 

interactive reference point approach proposed by 

Alves and Climaco (2000) presented for multiple 

objective MILP problems. The proposed framework is 

shown in Figure 1. 

First the problem is solved at the nominal values of 

the uncertain parameters using a branch and bound 

solution approach, and the dual information p, zp is 

collected at each leaf node. 
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Figure 1. Flow chart of the proposed approach  

Assuming that the optimal solution is found at node 0, 

the LP sensitivity analysis is then performed at node 0 

to determine the range basis within which the current 

optimal basis does not change. 

We need to find the perturbation max beyond which 

the structure of the branch and bound may not remain 

the same. max can be found through the following 

equation: }}min{,min{
0

0
max

p

p
basis zz

:

where z0 and 0 are the objective value and dual 

multiplier at the optimal node 0, respectively. Note 

that only the positive 
p

p zz
0

0

need to be considered, 

because the negative one means that node p can never 

provide a better solution than node 0 at a certain 

point. 

3.2 Multiple Uncertain Parameters 

This subsection presents the detailed steps (Figure 2) 

of the proposed approach to deal with the case of 

multiple uncertain parameters. Assuming for 

simplicity in the presentation that we want to 

investigate two parameters, a and b, changing in the 

range of and . The MILP 

problem is first solved at using branch and 

bound algorithm and the optimal solution is found at 

node 1 (Figure 3). Other leaf nodes of the B&B tree 

are denoted as node 2, node 3, ..., node n. Note that 

only the information at the leaf nodes is required.  

0 0[a , a a] 0 0[b , b b]

0 0(a , b )

Figure 2. Flow chart of proposed approach for 

   multiple uncertain parameters case  

This is true since if at another set of uncertain 

parameters (a', b'), there exists a new optimal solution, 

it can always be uncovered by checking or continuing 

the branching procedure on the current leaf nodes.

Let's assume for example that the new optimal 

solution can be provided by a non-leaf node (node A). 

With the original data, the relaxed LP problem of 

node A must have a partial integer solution, otherwise 

it is a leaf node. With the perturbed data, the LP 

problem of node A gives the optimal integer solution. 

According to our proposed method, all the current leaf 

nodes are examined that include the subsequent nodes 

of node A (node 2 and 3). Apparently, if node A 

yields an integer solution, either node 2 or 3 should 

provide that solution too. Thus, it is true that only the 

leaf nodes need to be examined at each iteration. 

Figure 3. Branch and bound tree 

Then the multiparametric linear programming is 

solved at each of the leaf nodes including node 1, so 

as to identify the optimal value functions and their 

corresponding critical regions in the region of  

0 0[a , a a]  and . In this work, a 

new algorithm is proposed for the solution of mpLP. 

When the mpLP procedure is completed, the output 

will be a set of optimal functions 

, where K is the 

number of critical regions. For any point 

0 0[b , b b]

k k

a k bz z , k 1, , K

a b( , )  in 

the range of 0 0[a , a a] and , the 

objective value  of the relaxed LP problem of 

that node can be expressed by 

. If the 

procedure is not complete, then there must exist a 

point 

0 0[b , b b]
*cx

k k

a k bmax{z , k 1, , K}

a b( , ) , such that 
k k

a k b
k

max{z }

is less than . Thus a bilevel programming 

problem is formulated as shown in problem (P2). It is 

proved that linear bilevel programming problems 

(BLPP) are strongly NP-hard (Bard 1998). In order to 

avoid solving a BLPP, we propose to first convert the 

relaxed LP problems (inner problem in (P2)) at the 

leaf nodes to its dual form, so that the uncertain 

parameters appear in the objective function and 

substitute the inner problem in problem (P1).   

*cx

max   zAxcx }|{min   (P2) 

subject to      Kkzz b
k

a
kk ,...1,)()()(

aaa a 00

bbb b 00

In problem (P3), the objective function is to 
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maximize the gap between the optimal objective 

value y  at any point in the uncertain range and the 

maximum value of the optimal function, which is 
k k

a k b
k

max{z }. Note that the problem is 

nonlinear due to the bilinear term in the objective 

function. The constraints contain the original 

constraints and the current optimal functions 
k k

a kz z b , hence all the constraints are 

linear. If the objective value of the (P3) model is 

nonzero, it means that there exists at least one point 

a b( , )  at which its real objective value cannot be 

represented by any of the current objective value 

functions. Therefore, the objective value function at 

that point is az z b  and should be 

included in the next iterations. This procedure 

terminates when the objective value for problem (P3) 

is 0, which means that the entire uncertain parameter 

range is covered by the existing objective value 

functions. Since (P3) is a nonconvex problem, a 

global optimization algorithm should be utilized such 

as GAMS/BARON (Sahinidis, 1996), which relies on 

branch-and-reduce algorithm. Therefore, by 

performing mpLP at each leaf node p, a number of 

critical regions (k), 
1 2 K

p pCR , CR , , CR p
 are 

identified and in each , the 

optimal value 

k

pCR , k 1, , K

*k

pz  is expressed as 

*k k k k

p p p a pz z b . The next step is to update 

the B&B tree. The main procedure involves to 

compare the critical regions of the leaf nodes with the 

current upper bounds and finally identify a set of new 

critical regions, and their corresponding objective 

function values and optimal integer solutions. At the 

beginning, the upper bounds 
UB

pCR  are set to be the 

critical regions of the current optimal node (node 1), 

which are C . Assuming that 

we want to compare critical regions  and 

, which have intersection CR , the following 

constraint is defined: and a redundancy 

test for this constraint is solved in  as shown in 

problem (P4) (Acevedo and Pistikopoulos 1997). The 

solution of this problem provides the optimal 

functional form in .

(1) (2) (K)

1 1 1R , CR , , CR

2

UB

1CR
UB

2CR int

UB *2

1z z
intCR

intCR

max y              (P3) 

subject to  cyAT

aaa a 00

bbb b 00

0y

max zy               

subject to  cyAT

Kkzz b
k

a
kk ,...1,)()()(

aaa a 00

bbb b 00

0y

At each iteration, the new leaf nodes in the updated 

B&B tree will be compared to the current upper 

bounds, so as to determine the new optimal functions 

in their intersected region. This procedure stops when 

no further branching is required and the uncertainty 

analysis of the entire uncertain space can be 

presented by a number of critical regions that contain 

their corresponding optimal functions and integer 

solutions. 

max              (P4) 

subject to  
)2*(

21 zzUB

b
UB

a
UBUBUB zz 1111

bazz
)2(

2
)2(

2
)2(

2
)2(

2

bbb b 00

ubt
ba CR,

Comparing to the existing approach (Acevedo and 

Pistikopoulos 1997), the proposed method solves the 

mpLP at only the leaf nodes in the B&B tree instead 

of every node during the branch and bound 

procedure, and consequently reduces the 

computational efforts significantly as will be shown 

in the preliminary results in the next section. 

Moreover, the new mpLP approach can efficiently 

determine the optimal function with respect to the 

uncertain parameters and the critical regions without 

having to retrieve the optimal tableaus and 

investigate the neighboring bases.   

4. CASE STUDY 

In this section a case study is presented and the 

results evaluated to assess the viability and efficiency 

of the proposed approach. High quality solutions 

were found efficiently, which provides confidence 

that the proposed approach will also be effective on 

new problems and extensions.  

Figure 4.  STN for example problem 

To present the main steps, the first example is 

considered here as described through the STN 

representation in Figure 4. The data for this example 

can be found in Ierapetritou and Floudas (1997). The 

problem is solved at the initial demand value (50). A 
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branch and bound tree is constructed to determine the 

optimal schedule, which is found to be schedule 1 

with makespan 7.04 hours. It is provided by two 

nodes 1A and 1B that represent equivalent schedules. 

Performing linear sensitivity analysis on the optimal 

nodes, we get  which is the change 

allowed in the demand for which the B&B structure 

remains the same. For a slight change in 

, nodes 1A(B) still yield optimal 

solution with objective value of 7.08 hours, but the 

basis changes. For the second iteration, LP sensitivity 

analysis is performed on nodes 1A(B). This results in 

max 6.92

max 7

basis
=26.03, which is the value of change of 

demand where the basis remains unchanged, and 

there is no leaf node at which this value is intersected 

which is determined by examining the value of 
p 0 0 p(z z ) /( ) where zp is the objective value 

at node p and p the corresponding lagrange 

multiplier, and found to be larger than 26.03 for all 

leaf nodes. Therefore . For a small 

perturbation away from this 

value , the tree is updated and 

the optimal solution is provided by nodes that 

correspond to equivalent schedules 2A(B, C, D). 

Nodes 2A(B, C, D) are intersected by another two 

nodes 3A(B) in the next iteration, then nodes 3A(B) 

continue to provide the optimal schedule but with a 

different basis in the following iteration. After that, 

the problem becomes infeasible when the demand is 

greater than 87.5. The three operations schedules are 

presented in Figure 5 and Figure 6 presents how the 

makespan and optimal schedule change with the 

demand.  

max 26.03

max 27

Figure 5: Gantt charts of schedules 1,2,3  

For the multiobjective approach, the nominal demand 

for both products 1 and 2 is 80 and is assumed to 

exhibit a variability of 50%. 5 scenarios (40, 60, 

80, 100, 120) are selected to represent the uncertain 

demand for each product and thus result to a total of 

25 scenarios. 10% demand satisfaction is also 

assumed for this example.  

Figure 6. Parametric solution for example problem 

Following the proposed approach presented in 

Section 3.2, the individual minimum points are 

obtained as follows: (5.005, 143.65, 

0.045), = (10.56, 0, 0.696), 

. Therefore, the utopia 

point is  and the matrix 

. In order to 

generate different values of , let's assume that for a 

n-objective problem, 

*

1f (x )
*

2f (x )
*

3f (x ) (5.236,143.55, 0)
*F (5.055, 0, 0)

0 5.501 0.181

143.65 0 143.55

0.045 0.696 0

j  is the uniform spacing 

between two consecutive j  values for 

j 1, , n 1. The possible values that can be taken 

by 1  are: . Given a particular 

value of 

1 1[0, , 2 , ,1]

1 , i 1, , j 1 , the possible values of 

j , j 1, , n 1 are: j j j j[0, , 2 , , k ] where 

ii

j

j

1
k I . The last component of n  is 

defined as: n i
1 i . For this example the 

step sizes are chosen to be  and ,

and NBI

1 0.1 2 0.05

 problem is formulated and solved for 

different values of . The resulting Pareto optimal 

surface is shown in Figure 7, which contains 8 

different schedules. Taking a closer look at the 

optimal Pareto solutions, a number of interesting 

observations can be made. For example, focusing on 

two points A and B as shown in Figure 6 point A 

which is obtained with = (0, 1, 0) is in the area of 

solutions that prefer model robustness. The three 

objective values for this point are 10.56, 0, 0.70 for 

expected makespan, model robustness, and solution 

robustness, respectively. On the other hand, point B 

represents the optimal solution for = (0.6, 0.4, 0), 
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which corresponds to a different schedule. 

Comparing to the schedule A, this solution 

corresponds to a decision that favors the expected 

makespan and solution robustness, the values of 

which are 6.82 and 0.25, respectively, at the expense 

of low model robustness, which is 64.39. For the 

nominal demand of (80, 80), schedule A requires 

9.83hr and schedule B prefers having a shorter 

makespan of 8.46hr. However, at the maximum 

demand value (120, 120), schedule A focuses more 

on meeting the demands and can produce the 

required amount within 13.32hr, while schedule B 

results in an unsatisfied amount of 33.33 units for 

product 1 and 32.25 units for product 2.  

Figure 7.  Pareto set of solutions for example 1 

These results indicate that the proposed methods can 

be extended to meet all research objectives. The 

parametric analysis generates alternative solutions to 

cover the uncertainty space whereas the 

multiobjective optimization provides solutions 

according to decision maker’s position towards risk. 

5. CONCLUSIONS AND FUTURE WORK 

A multiobjective robust optimization model is 

proposed to deal with the problem of uncertainty in 

scheduling considering the expected performance, 

model robustness and solution robustness. NBI 

technique is utilized to solve the multiobjective model 

and successfully produce Pareto optimal surface that 

captures the trade-off among different objectives in 

the face of uncertainty. 

The issue is also addressed through parametric MILP 

analysis. An integrated framework is developed that 

allows the parameters in the RHS of the MILP 

formulation to vary independently. It mainly consists 

of two steps: LP/mpLP sensitivity analysis and 

updating the B&B tree. For the case of mpLP, a novel 

algorithm is proposed which solves a set of NLP 

problems iteratively using the commercially available 

global optimization solver BARON.  

The work can be further extended to investigate the 

cases where preferences exist among the objectives, 

so as to generate more meaningful Pareto optimal 

solutions. This will help reducing the computational 

complexity of the proposed approach. In addition, 

there are cases that instead of unique anchor points, 

anchor curves are found due to the fact that the 

objectives are not entirely conflicting with each other. 

For these cases, it will be of interest to study how the 

selection of anchor points can affect the Pareto 

surface.

The parametric MILP approach can be further 

developed to enable the analysis of uncertainty in the 

constraints coefficients and the case that uncertainty 

exists in the objective function coefficients, 

constraints coefficients and the RHS parameter at the 

same time. In that case, a linear bilevel programming 

problem, which is similar to (P2), will be formed and 

solved using appropriate algorithms. 
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