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Abstract:Im proving the perform ance ofbatch processes requires tools that are
tailored to the specificities of batch operations.These include a m athem atical
representation thatexplicitly showsthe two independenttim e variables(the run
tim e t and therun index k)aswellasthetwo typesofoutputs(therun-tim eand
run-end outputs).Furtherm ore,corrective action can be taken via both on-line
and run-to-run control.Thispaperinvestigatesthe im portantnotionsofstability
and controllability forbatch processes,whereitisshown thata valueratherthan
a yes-no answer needs to be considered.The tools required for evaluating these
properties are readily adapted from the literature.Finally,the various control
strategiesareillustrated via thesim ulation ofa sem i-batch reactor,and references
arem ade to the appropriatetoolsforevaluating stability and controllability.
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1.INTRODUCTION

The m ajority ofcontrolstudies in the literature
have dealt with continuous processes operating
around around an equilibrium point. In recent
years, however, the class of system s where the
process term inates in finite tim e has received
increasing attention.An interesting featureisthe
factthatm ostoftheseprocessesarerepeated over
tim e.M anyindustrialoperations,especiallyin the
areas of batch chem icalproduction,m echanical
m achining,and sem iconductorm anufacturing do
fallunderthiscategory.

In a batch process,operations proceed from an
initialstate to a very di erentfinalstate.Hence,
there exists no single operating point around
which thecontrolsystem can bedesigned (Bonvin
1998).Also,since batch processing is character-

ized by thefrequentrepetition ofbatch runs,itis
appealing to usetheresultsfrom previousrunsto
im prove the operation ofsubsequent ones.This
has generated the industrially relevant topic of
run-to-run controland optim ization (Cam pbellet
al. 2002,Francoiset al. 2005).Repetition provides
additionaldegreesoffreedom form eetingthecon-
trolobjectivessincethework doesnotnecessarily
have to be com pleted in a single run but can
be distributed overseveralruns.Thisbringsinto
picture an additionaltype ofoutputs that need
to be controlled,the run-end outputs.The m ain
di culty is thatthese outputs are typically only
availableatthe end ofthe run.

Though a lotofwork hasbeen reported recently
in the literature on batch process control and
optim ization (Abelet al. 2000,Srinivasanet al.
2003,Flores-Cerrillo and M acG regor 2003,Chin
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et al. 2004),there isstilla lack ofunderstanding
oftheirsystem -theoreticalproperties.Due to the
finite-tim enatureofbatch processes,thestandard
definitionsofpropertiessuch asstability,control-
lability and observability cannotbe used.

Thispaperpresentsdefinitionsand analysistools
forthe two im portantpropertiesofstability and
controllability forbatch processes.Itisim portant
to em phasize thatthe contribution ofthis paper
isin discussingthevariousnotionsofstability and
controllability and choosing the rightnotionsfor
theanalysisofbatch processes.Theanalysistools
are then readily adapted from those existing in
the literature.

Thepaperisorganized asfollows.Section 2 intro-
duces a briefmathematicaldescription ofbatch
processes and discusses the im plications of two
tim e scales and two types ofoutput for control.
Stability and controllability are analyzed in Sec-
tions3and 4,respectively.An illustrativeexam ple
is presented in Section 5, and conclusions are
drawn in Section 6.

2.CONTRO L O F BATCH PROCESSES

A batchprocesscanbeseenasarepetitivedynam -
icalprocessthatischaracterized by the presence
ofa finite term inaltim e and thus the possibility
ofhaving severalsequentialruns,with each run
being dynam ic.Batch processes have the follow-
ing m ain characteristics:(i) There are two tim e
scales,i.e.the continuous tim et within the run
and the discrete run index k,(ii) the tim e ofa
run islim ited (finite),(iii)thereisnosteady-state
operating pointwith respectto t,i.e.theanalysis
has to be perform ed around trajectories rather
than an equilibrium point,and (iv)two types of
m easurem ents are available,i.e. during the run
and atthe end ofthe run.

2.1 Terminology and notations

LetR beused forthespaceofrealnum bersandL
forthatoffunctions,and letZ+ representtheset
of positive integers excluding zero.The various
elem ents of a batch process can be defined as
follows:

(1) Run: O nerealization ofa repetitive process.
(2) Run time: Thetim ewithin arun,t [0, T]

R+,whereT isthe finite term inaltim e.
(3) Run index: The num berofa run,k Z+.
(4) Inputs: The inputs,uk(t) U R

m,evolve
with t during run k.The input trajectories
forrun k aredenoted by uk[0, T] Lm.

(5) States: The states,xk(t) X Rn,evolve
with t during run k.xic

k aretheinitialcondi-

tionsattim e t = 0.The corresponding state
trajectoriesaredenoted by xk[0, T] L

n.
(6) Outputs: The outputs are oftwo types:(i)

The run-tim e outputs, yk(t) Rp, corre-
spond to the on-line m easurem ents during
run k; (ii) the run-end outputs, zk Rq,
includethem easurem entsthatbecom eavail-
able at the end ofrun k.The latter m ight
alsodepend on thestateevolution duringthe
entirerun,e.g.the averagevalueofa state.

(7) System dynamics: They describe the state
and output evolutions for a single run.For
exam ple,the nonlineartim e-invariantm odel
describing theprocessbehaviorduring runk
reads:

ẋk(t)= F(xk(t), uk(t)), xk(0)= xic
k (1)

yk(t)= H(xk(t), uk(t)) (2)

zk = H (xk[0, T], uk[0, T]) (3)

The dynam ics over severalruns stem from
the possibility to update the initial condi-
tionsand the inputson a run-to-run basis.

Thesystem propertieswillbeanalyzed around se-
lected reference trajectories,forwhich the accent
(̄·)willbe used.Forexam ple,the reference state
trajectorieswillbe denoted by x̄[0, T],with x̄(t)
being the corresponding state values at tim et.
Perturbationsdenoted by (·)willbeconsidered,
e.g. x̄[0, T]isa perturbation ofx̄[0, T].

2.2 Control strategies

There are two types of controlobjectives (run-
tim e outputs yk(t) or yk[0, T],and run-end out-
puts zk), and also di erent ways of reaching
them (on-line with uon

k (t) and run-to-run with
urtr

k [0, T]).Each objective can be m et either on-
line or on a run-to-run basis,this choice being
dependenton thetypeofm easurem entsavailable.
The controlstrategies are classified in Figure 1
and discussed next.

Run-end outputs
         zk

Run-time outputs
yk(t) or yk[0,T]

Control objectives

On-line control1

u
k
on(t) → y

k
(t) → y

k
[0, T

PID

Iterative learning
control

3

u
k
rtr[0, → yk[0,

ILC

Predictive control2

MPC

Run-to-run control4

U(π k ) = [0, → zk

R2R

On-line

Run-to-run

Implementation
     aspect 

→ z
pred,k

(t)]

T]T] T]

u
k
on (t)

u
k
rtr

Fig.1.Controlstrategies resulting from consid-
eration of the control objectives (run-tim e
orrun-end outputs)and the im plem entation
aspect(on-line orrun-to-run).
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Fig. 2. Batch process with the inputs being updated both on-line (intra-run, use of the run-tim e
m easurem entsyk(t)) and on a run-to-run basis (inter-run,use ofthe run-end m easurem ents zk).
The sym bol isused to indicatea changein viewing the tim e argum ent,e.g.from a trajectory to
an instantaneousvaluewhen going downward and conversely when going upward.

• On-line control of run-time outputs. Theap-
proach is sim ilar to that used in the tradi-
tionalcontrolliterature.Controlistypically
done using PID techniques or m ore sophis-
ticated alternativeswhenevernecessary.For-
m ally,thiscontrollercan be written as

uon
k (t)= K(yk(t), ysp(t)) (4)

whereK istheon-linecontrollerfortherun-
tim e outputsyk(t),and ysp(t)the setpoint.

• On-line control of run-end outputs. Itisnec-
essary here to predict the run-end outputs
based on m easurem entofthe run-tim e out-
puts.M odelpredictivecontrol(M PC)iswell
suited to thattask (Nagy and Braatz2003).
The controllercan be written as

uon
k (t)= P (zpred,k(t), zsp) (5)

whereP istheon-linecontrollerfortherun-
end outputszk,and zpred,k(t)theprediction
ofzk availableattim e instant t.

• Run-to-run control of run-time outputs. In
batch processing,key processcharacteristics
such asprocessgain and tim e constantscan
vary considerably.Hence,the need to pro-
vide adaptation in a run-to-run m anner to
compensatethe e ectofthese variations.
The run-to-run part of the m anipulated

variableprofilescan begenerated usingItera-
tiveLearning Control(ILC)thatexploitsin-
form ation from previousruns(M oore 1993).
The controllerhasthe structure

urtr
k [0, T]= I(yk−1[0, T], ysp[0, T]) (6)

where I is the iterative learning controller
fortherun-tim eoutputsyk[0, T].Itprocesses

the entire profile ofthe previousrun to gen-
erate the entire m anipulated profile for the
currentrun.

• Run-to-run control of run-end outputs. The
input profiles are param eterized using the
input param eters πk, urtr

k [0, T] = U(πk).
Control is then im plem ented using sim ple
discrete integralcontrollaws,that is πk =
πk−1 + K(zsp − zk−1)(Francoiset al. 2005).
Form ally,the controllercan be written as

urtr
k [0, T]= U(πk), πk = R (zk−1, zsp)(7)

where R is the run-to-run controller for
the run-end outputs zk, and U the input
param etrization.

Note that,except for predictive controlthat in-
volvesprediction,alltheothercontrolschem esuse
only m easurem entsand thusdo notnecessitatea
processm odelforim plem entation,i.e.a very nice
feature for batch processes,where detailed accu-
ratem odelsareseldom available(Bonvin 1998).

By com bining strategies for the various types of
outputs,thecontrolinputscan havecontributions
from both run-to-run and on-lineupdates:

uk(t)= urtr
k (t)+ uon

k (t) (8)

The term urtr
k (t) stem s from the trajectories

urtr
k [0, T]and representthe ‘feedforward’operat-
ingpoliciesthatarenotalteredwithin arun.How-
ever,urtr

k [0, T]m aychangebetween runs(viarun-
to-run update),leadingtointer-run dynam ics.O n
the other hand,uon

k (t) represents the ‘feedback’
correction during the run (via on-line update).
This com bination of strategies is illustrated in
Figure2.
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Applyingonlyrun-to-run controlexhibitsthelim -
itationsofbeing open-loop in run tim e,in partic-
ularforrun-tim edisturbances.In general,a com -
bination ofthesefourstrategiesisused.However,
in such a com bined schem e,careshould be taken
thattheon-lineand run-to-run correctiveactions
do not oppose each other. Hence, the stability
issueiscritical.

In form ulatingthecontrolstrategy,controllability
isim portantsinceitinform swhetherornotopen-
loop inputsexistthatcan providethedesired per-
form ance.O nce a controllerisdesigned,stability
issuesareofupperm ostim portance.Stabilization
(and m oreappropriatelyfinite-tim estabilization),
which is the issue ofdesigning a controller that
achieves stability and desired perform ance,will
notbe addressed in thispaper.

3.INTRA-AND INTER-RUN STABILITY

Due to the presence ofthe two tim e scales t and
k,both intra-run (in run tim et)and inter-run (in
run index k)stability need to be addressed.

3.1 Intra-run stability

Stability in run tim e t is im portant for repeata-
bility and reproducibility reasons.The problem
addressed therein is whether the trajectories of
various runs with initial conditions su ciently
closewillrem ain closeduring therestofthe run.

System (1) under on-line closed-loop operation
using the feedback law (4) or(5)can be written
as:

ẋk(t)= F̃(xk(t), t), xk(0)= xic
k (9)

The standard definition of Lyapunov stability
is typically used around an equilibrium point
(Vidyasagar 1978).To extend this definition to
finite-tim e system swithoutan equilibrium point,
itisfirstnecessary to introduce the conceptofa
tubearound thenom inaltrajectoryin the(n+ 1)-
dim ensionalspaceofstatesand tim e.

Definition 1. Thetrajectoriesxk[0, T]aredefined
to be inside the (a, b)-tube Ba,b around the ref-
erence trajectories x̄[0, T],i.e.xk[0, T] Ba,b,if
they satisfy xk(t)− x̄(t) < aebt, t [0, T].

The tube consists of a ball of radius a in the
n-dim ensionalstate space at tim e t = 0,which
shrinksorexpandswith tim eataratedeterm ined
by b.

Definition 2. System (9) is locally intra-run β-
tube stable around the trajectories x̄[0, T] if

thereexistsa δ > 0 such that,forallxic
k = x̄(0)+

x̄(0) with x̄(0) < δ, the state evolution
xk[0, T] Bδ,β.

A diverging (converging) system has a positive
(negative) value ofβ. Note that a system that
initially diverges to eventually converge has a
positiveβ.In addition to itssign,the value ofβ
isquiteusefulsince,with finite-tim esystem s,the
dividing line between stability and instability is
notwhetherthe trajectoriesconverge ordiverge,
but by how m uch they com e together or grow
apart in the interval of interest. Hence, in the
contextofbatch processes,stabilityisnotayes-no
result,butrathera m easurequantified by β.

Definition 3. System (9) is locally intra-run α-
terminal-time stable around the trajectories
x̄[0, T] if there exists a δ > 0 such that, for
allxic

k = x̄(0)+ x̄(0) with x̄(0) < δ,the
term inalstatesstatisfy xk(T)− x̄(T) < αδ.

Term inal-tim e stability is the counterpart of
asym ptoticstabilityforfinite-tim esystem s.Again,
stability isnotsim ply determ ined by whetherα is
greaterorlessthan 1,butinstead itisquantified
by the value ofα.

It is possible to give results sim ilar to the two
theorem sofLyapunov (onebased on linearization
and theotheron theexistenceofa non-increasing
Lyapunov function)fortube stability.

Theorem 1. Let ẋk(t) = A(t) xk(t) with the
initialconditions xk(0)= x̄(0)be a bounded
linearization ofSystem (9)along x̄[0, T]forrun k.
Let σmax(t) be the m axim um of the realparts
of the eigenvalues of the tim e-dependent m a-
trix 1

t

∫ t

0 A(τ)dτ.Also,let σ̄max = m axt σmax(t).
Then, System (9) is tube stable around x̄[0, T]
with β = σ̄max.Furtherm ore,the system is lo-
callyterm inal-tim establearound x̄[0, T]with α =
eσmax(T )T.

Theproofofthetheorem usesBellm an-G ronwall’s
Lem m a (Vidyasagar 1978).Note that the eigen-
valuesoftheintegralofA arestudied ratherthan
theeigenvaluesofA them selves.In m ostoptim ally
operated finite-tim e system s (e.g.using a finite-
tim elinearquadraticregulator),though theeigen-
values ofthe integralare negative,som e of the
eigenvaluesofA m ightbecom epositivetowardthe
end ofthe run.This phenom enon caused by on-
linecontrolofzk isreferred to asthe‘batch kick’
in theoptim ization ofbatch processes.Intuitively,
thism eansthatlittlecan gowrongtowardtheend
sincethe ‘tim e-to-go’issm all.
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Turning to the second Lyapunov m ethod, the
following resultcan be stated.

Theorem 2. Let V (x, t) : Rn × R+ R be
a continuously di erentiable function such that
V (̄x, t) = 0 and V (x, t) > 0 for all x(t) =
x̄(t), t.IfV̇ (x, t) σ(t)V (x, t) along the sys-
tem trajectories for allx(t) = x̄(t)+ x̄(t), t,

x̄(t) < δ,then System (9)istube stable with

β = m axt
1
t

∫ t

0
σ(τ)dτ.

Note thatthe definition ofstability presented by
(Lohmillerand Slotine 1998)using contraction of
deviations around pre-specified trajectories is a
special case of Definition 2 above and requires
contraction atevery tim einstant,i.e.σ(t)< 0 for
allt.Thism easureisclearly inadequateforbatch
system s that exhibit a batch kick. Inform ation
regardingtheoverallperform anceisbetterrelated
to the integralofσ asgiven in Theorem s1 and 2
than to itsinstantaneousvalue.

3.2 Inter-run stability

The interestin studying stability in run index k
arisesfrom thenecessitytoguaranteeconvergence
ofrun-to-run adaptation schem es.Here,thestan-
dard notion ofstabilityappliesastheindependent
variable k goes to infinity.The m ain conceptual
di erence with the stability of continuous pro-
cessesisthat‘equilibrium ’refersto entire trajec-
tories.Hence,thenorm shaveto bedefined in the
space offunctionsL such asthe integralsquared
errorL2.

For studying stability with respect to run index
k, System (1) is considered under closed-loop
operation.Atthe kth run,the trajectoriesofthe
(k − 1)st run are known, which fixes urtr

k [0, T]
accordingto(6)or(7).Theseinputprofiles,along
with the on-line feedback law (4) or (5), are
applied to (1) to obtain xk(t) for allt and thus
xk[0, T].Allthese operationscan be represented
form ally as:

xk[0, T]= F̃ (xk−1[0, T]), x0[0, T]= xinit[0, T](10)

where xinit[0, T] are the initial state trajecto-
ries.Inter-run stability is considered around the
equilibrium trajectory com puted from (10), i.e.
x̄[0, T]= F̃ (̄x[0, T]).

Definition 4. System (10)islocallyinter-run Lya-
punov stable around the equilibrium trajectories
x̄[0, T] if there exist δ > 0 and ε > 0 such
that, for all x0[0, T] = x̄[0, T]+ x̄[0, T] with

x̄[0, T] < δ, xk[0, T]− x̄[0, T] < ε, k.If,in
addition,lim k→∞ xk[0, T]− x̄[0, T] = 0,then the
system islocally inter-run asym ptotically stable.

This stability definition is fairly standard but in
a discrete setting.Thus,in principle,either one
ofthe two Lyapunov m ethods (via linearization
or Lyapunov function) can be used to analyze
stability.However,the linearization m ethod has
problem ssincedi erentiation hastobeperform ed
in thespaceoffunctions.TheLyapunov-function
m ethod can beused oncea norm isappropriately
defined (Vidyasagar1978).

Theorem 3. Let V :Ln R be a continuously
di erentiable functionalsuch thatV (̄x[0, T])= 0
and V (x[0, T])> 0 forx[0, T]= x̄[0, T].

System (10) is locally inter-run Lyapunov sta-
ble if,for allx0[0, T]= x̄[0, T]+ x̄[0, T]with

x̄[0, T] < δ,V (xk+1[0, T]) V (xk[0, T]), k.

If,in addition,x̄[0, T]isthe largestinvariantset
satisfyingV (xk+1[0, T]) = V (xk[0, T]),then the
system islocally inter-run asym ptotically stable.

Again, the choice of a Lyapunov function is a
m ajor di culty. The norm of the input error
u[0, T]− ū[0, T] L2

has served as a usefulLya-
punov function in som e ofour studies,although
the output error has been widely used in the
literature.

4.CO NTRO LLABILITY O F RUN-TIM E AND
RUN-END O UTPUTS

O neofthedefinitionsofcontrollabilityforinfinite-
tim e dynam ic system s requires that there exists
an inputvectoru[t0, τ]with which theequilibrium
statecanbereachedfrom anyarbitrarystatex(t0)
in the neighborhood ofthe equilibrium .

Therearetwo di cultieswith extending thisdef-
inition to batch processes.Firstly,the controlla-
bility offinite-tim e system s needs to be defined
aroundtrajectories.Therein,therelevantquestion
is whether or not som e neighborhood of given
trajectoriescan be reached.Clearly,notallstate
trajectories can be fixed independently because
the state vector x[0, T]contains a lot ofredun-
dant inform ation.For exam ple,since a position
trajectory enforcesthevelocity,thetrajectoriesof
position and velocity cannot be chosen indepen-
dently ofeach other1 .Hence,only controllability
in term sofindependent output trajectoriescan be
investigated (y-controllability).

Secondly, the above definition of controllability
mentionstheexistenceofa timeτ,which however
m ight be larger than the term inaltim e T.This
aspect becom es im portant when considering the

1 In contrast, when instantaneous values are considered,
arbitrary position and velocity values can be specified.
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controllabilitywith respecttotherun-end outputs
(z-controllability).

Here,controllability addressestheproblem ofthe
existenceofinputsthatcan im plem entthedesired
action and thus is independent of whether the
correctionism adeon-lineoronarun-to-runbasis.

4.1 Controllability of run-time outputs

Letyi
k,i = {1,···, p},be the ith run-tim eoutput

ofSystem (1)-(2)and let its relative degree2 be

ri,i.e.∂
∂uk

djyi
k

dtj = 0, j < ri.

Definition 5. System (1)-(2)islocally y-controllable
around the arbitrary trajectories ȳ[0, T]ifthere
exists aδ > 0 such that,for all ȳ[0, T] < δ,

ȳi[0, T] C(ri−1) fori = {1,···, p},thereexists
uk[0, T] U that leads to yk[0, T] = ȳ[0, T]+

ȳ[0, T].

Note that ifthe first (ri − 1) derivatives of ȳi

are discontinuous,Dirac im pulsesare required at
the inputs to m eet the outputs.Thus,the per-
turbations ȳi that are considered cannot have
discontinuities in their first (ri − 1) derivatives,

i.e. ¯yi C(ri−1),whereCr denotesthe spaceof
functions that have continuous derivatives up to
orderr.

Notealsothatthetrajectoriesȳ[0, T]areassum ed
feasible, i.e. they respect the initial conditions
and they can beim plem ented through ū[0, T](the
condition under which ū[0, T]exist for a given
ȳ[0, T]isnotaddressed here).Thequestion asked
in this definition regards only the neighboring
trajectories.Thisisclearly a localinversion prob-
lem for which standard conditions for inverting
a m ulti-input m ulti-output system can be used
(Hirschorn 1979).

Theorem 4. Let uj
k, j = {1,···, m},be the jth

input ofSystem (1)-(2).Let the relative degrees
ri,i = {1,···, p},rem ain constantaroundȳ[0, T],

and M (t) be defined as M i,j(t) =
∂

∂uj
k

dri
yi

k

dtri .If

M (t) is of rank p, t, then System (1)-(2) is
locallyy-controllablearound ȳ[0, T].

4.2 Controllability of run-end outputs

A sim ilar definition can be provided for system
controllability in term sofreaching specified run-
end outputs.

2 The relative degree of an output is the minimal degree
of its time derivative for which at least one input appears.

Definition 6. System (1,3)islocallyz-controllable,
from tim e t0 on,around an arbitrary operating
pointz̄ ifthere exists aδ > 0 such that,for all

z̄ < δ,there existsuk[t0, T] U thatleadsto
zk = z̄ + z̄.

Here,the notion ofcontrollability is linked to a
given tim e t0.Thequestion asked isthefollowing:
Isitpossibleto changetheoutcom eoftherun if,
at tim e instant t0 in the run,one wishes so? To
answerthisquestion,considerthelinearization of
System (1,3)around a trajectory,resulting in the
lineartim e-varying system (Friedland 1986):

ẋk = A(t) xk + B(t) uk, x(t0)= 0(11)

zk = C(t) xk (12)

Theorem 5. Consider the output controllability
G ram m ian G(t)forSystem (11)-(12):

P(τ)= C(τ)e

∫
τ

t0
A(κ) dκ

B(τ)

G(t0)=

T∫

t0

P(τ)P T(τ)dτ (13)

IfG(t0)isofrank q,then System (1,3)islocally
z-controllablefrom tim e t0 on.

Foron-linecontrolofrun-end outputs,Theorem 5
can be used to indicate untilwhattim e t0 in the
batch the controlofrun-end outputsisfeasible.

For run-to-run controlofrun-end outputs,it is
im portant to study the case where the inputs
areparam eterized.Considertheparam eterization
uk[0, T]= U(πk),where πk Rnπ are the input
param eters.This way,the batch process can be
seen as a static m ap between the input param -
eters πk and the run-end outputs zk.To assess
controllability, the transfer m atrix betweenπk

and zk needs to be com puted.The equivalentof
Theorem 5 using input param etrization is given
next.

Theorem 6. Consider theq × nπ transfer m atrix
between π and z calculated forSystem (11)-(12):

T (t0)=

T∫

t0

C(τ)e

∫
τ

t0
A(κ) dκ

B(τ)
∂U

∂π
dτ (14)

IfT (t0)is ofrank q,then System (1,3)with the
param etrization uk[0, T] = U(πk) is locally z-
controllablefrom tim e t0 on.

Note that run-to-run control requires only the
evaluation ofthe m atrix T (0).The rank condi-
tion (or invertibility)ofG or T followsfrom the
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factthattheinputsthatcan createthenecessary
change in the run-end outputs are obtained by
inversion. However, note that as t0 approaches
T, the G ram m ian approaches singularity, with
G(T) = 0.Sim ilarly,ifa piecewise param etriza-
tion is used, after a certain time, some of the
param eterswillhaveno influenceon theoutputs,
thus making a few columns zero.Ast0 proceeds
toward T,m ore and m ore colum ns willbecom e
zero.Hence,as t T,invertingG orT requires
larger and larger inputs for control. Also rank
deficiency m ay occur,and the system m ay lose
controllability.

5. ILLUSTRATIVE EXAM PLE

Considerthescale-up,from thelaboratorytopro-
duction,ofa sem i-batch reactorin which several
reactions take place.The desired and m ain side
reactionsare

A + B C, 2B D

with C the desired product andD an undesired
side product.The reactionsare fairly exotherm ic
and the reactor is equipped with a jacket for
heat rem oval. The control objective is twofold:
(i)O perateisotherm ally at50◦C by m anipulating
the jacket tem perature,and (ii) m atch the final
concentrations that have been obtained in the
laboratory,cB(T)= cB,max and cD(T)= cD,max,
by m anipulating the feed rateofreactantB.

The controlstructure used is illustrated in Fig-
ure3.Itim plem entson-linefeedback tem perature
control.In addition, the feedforward profile for
the jacket tem perature T ff

j [0, T]is adjusted on
a run-to-run basisby m eansofILC.In thiscase,

M = dṪr

dTj
is a constant non-zero scalarirrespec-

tive ofthe trajectory chosen (hence,satisfies y-
controllability -Theorem 4).Thecontrollerreads

Tj,k(t)= T ff
j,k(t)+ KRek(t)+

KR

τI

t∫

0

ek(τ)dτ,

T ff
j,k+1[0, T − ]= T ff

j,k[ , T]+ KILC ek[ , T],

with ek(t) = Tr,ref(t)− Tr,k(t),KR the propor-
tionalgain and τI the integraltim e constant of
the PIm astercontroller.Itcan be easily verified
that the system is tube stable with a negative
β.KILC is the gain of the ILC controller and

0 the value ofthe input shift.The second
equation allowsadaptingthefeedforward term for
the jacket tem perature setpoint on a run-to-run
basisbased on ILC with inputshift.In Theorem 3,

the integralsquared output error
∫ T

0 e2
k(τ) dτ is

used astheLyapunovfunction in run index k.The
value ofthe input shift is tuned for convergence

(W elzet al. 2004).Duetothepresenceoftheshift,
theerrordoesnotconvergeasym ptoticallytozero.

In addition, the feed rate profile u[0, T] is pa-
ram eterized using the two feed-rate levelsu1 and
u2,each valid overhalfthe batch tim e.The final
concentrations cB(T) and cD(T) are m et, on a
run-to-run basis,by adjusting thetwo param eters
π = {u1, u2}.The transferm atrix T isevaluated
around the current operating point using (14),
with ∂U

∂π = [1 0]T during thefirsthalfofthebatch

and ∂U
∂π = [0 1]T in the second half.W ith the

m atrixT beingfullrank(satisfiesz-controllability
- Theorem 6), the discrete integralcontrol law
reads

πk+1 = πk + T +KR2R [zref − zk], (15)

where T + is the pseudo-inverse ofT ,and KR2R

the gain ofthe run-to-run controller.The run-to-
run convergenceofthisschem ecanbeshownusing
Theorem 3with thesquared inputerror π− π∗ 2

astheLyapunovfunction in run indexk (Francois
et al. 2005).

The evolution ofthe m anipulated and controlled
variablesareillustrated in Figures4.

6.CO NCLUSIO NS

Thecontrolofbatch processesischaracterized by
run-tim eand run-end objectiveson theonehand,
and by actions that can be im plem ented on-line
and on arun-to-run basison theother.Ithasbeen
shown thattheconceptsofstabilityand controlla-
bility,which arewellunderstood forinfinite-tim e
system s operating around an equilibrium point,
are not directly applicable to finite-tim e batch
processes.

W ith regard to stability, the concept of tube
stability,by which the state trajectories rem ain
within a given tube, has been introduced. The
special case of term inal-time stability has also
been discussed.Two theorem sthathelp evaluate
tube stability havebeen proposed.

As for controllability with respect to specified
trajectories,itwasobserved thatthe entire state
spacecannotbestudied dueto thefactthatthere
is considerable redundancy in the state trajecto-
ries.Hence,only controllability with respect to
two types ofoutputs have been addressed.Con-
trollability wasstudied from the point-of-view of
inversion,and results were adapted from the ex-
isting literature.
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