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Abstract:
This paper proposes a control strategy for a Diesel Oxidation Catalyst (DOC) which is grounded on
a one-dimensional distributed parameter model. This first principles model for the propagation of the
temperature variations accounts for spatially distributed heat generation (due to oxidation of reductants).
As is discussed, heat generation can be regarded as equivalent inlet temperature variations. This fact is
supported by experimental results. By nature, DOC outlet temperature response includes long and time-
varying delays. An approximation of the proposed model allows to derive delays analytically, and can be
used to schedule control parameters. As a consequence, it is easy to design several standard controllers
for the DOC outlet temperature which account for the effects of the inlet temperature (disturbance)
and the reductant (control). In this paper, simulation results are presented for a PI, a PID, and a Smith
predictor. Interestingly, the three controllers use solely parameters determined from the previous analysis
and do not need any extra tuning parameter. The strategies are tested on a standard NEDC driving cycle
in simulation. It appears that, among these standard strategies, the DOC partial derivative equations can
be efficiently controlled using the presented Smith predictor.
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1. INTRODUCTION

1.1 Motivation

On most new Diesel vehicles, increasing requirements regard-
ing particulate matter emissions (Ecopoint Inc., 2008) are sat-
isfied using a Diesel Particulate Filter (DPF). This filter, lo-
cated in the vehicle exhaust line, stores particulate matter until
it is burnt in an active regeneration process (Bisset, 1984).
During this phase, DPFs behave like potentially unstable reac-
tors (Achour, 2001), and their inlet temperature must be care-
fully controlled to prevent filter runaway.

In most current aftertreatment architectures (Koltsakis and Sta-
matelos, 1997), a Diesel Oxidation Catalyst (DOC) is placed
upstream the DPF in the vehicle exhaust line. To increase
the DPF inlet temperature, reductant is oxidized in the DOC,
which, in turn, increases its outlet temperature. The DOC also
conveys, up to some heat losses, its inlet enthalpy flow: in other
words, inlet temperature variations propagate through the DOC.

A DOC is a chemical system difficult to control. Classical
models are usually composed of a dozen of coupled partial dif-
ferential equations (PDEs) (Depcik and Assanis, 2005), which
complexify the development of model-based control laws. Ex-
perimentally, it can be observed that a step change on the inlet
temperature propagates to the output of the system with long
response times (Oh and Cavendish, 1982). Depending on the
engine outlet gas flow rate, these response times significantly

vary: they roughly decrease by a factor of 10 from idle speed
to full load. Strategies that are commonly used to deal with this
problem rely on look-up tables, which, in practice, are difficult
and time-consuming to calibrate.

The purpose of this paper is to propose implementable control
laws tuned according to a simple control-oriented model. This
approach allows faster calibration. To achieve this goal, simpli-
fication of the above-mentioned classical models is needed.

After a presentation of a mathematical formulation of the
control problem in the second part of this introduction, we show
in section 2 how the model proposed in Lepreux et al. (2008),
initially using inlet temperature as control variable, can be used
to accurately describe actual cases of engineering interest, i.e.
cases where the reductant flow is the control variable. Then,
we show in section 3 how to approximate the model. Finally,
in section 4, this approximation is used to tune several classic
controllers. Simulation results serve as comparisons and stress
that a Smith predictor tuned using the proposed methodology
represents an efficient controller for the DOC.

1.2 Problem Formulation

It has been shown in Lepreux et al. (2008) that, considering only
inlet temperature variations and neglecting chemical reactions,
a DOC thermal behavior can be accurately described by the
following model
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with boundary control
T (z = 0, t) = T in(t)

where T and Ts are respectively gas and solid temperature
variations about steady state, v is the channel gas speed which
can be derived from mass flow, parameters (k1,k2) can be either
derived from usual correlation (Osizik, 1977) or identified from
experimental data (Lepreux et al., 2008). The output of the
system is the outlet gas temperature

T out(t) = T (z = L, t)
Considering steady-state initial conditions{

T (z, 0) = 0
Ts(z, 0) = 0

system (1) yields the transfer function
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where m(z) = k1k2z/v, x̂ is the Laplace transform of x, and s
is the Laplace variable. We denote Υ the Heaviside function and
Ii the modified Bessel functions of the first kind. The system
step response is
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For an easy evaluation of (3), a formulation using power series
expansion is given in Lepreux et al. (2008).

2. REDUCTANT FLOW AS CONTROL VARIABLE

It is shown in Lepreux et al. (2008) that experimentally mea-
sured step responses of the system can be identified to model (1)
with good quality. However, this representation might seem a
bit simplistic in view of real applications since inlet temperature
variations are difficult to control and cannot be used directly
as control variable. In practice, reductants (hydrocarbons HC)
are injected at the inlet of the DOC. They are oxidized on the
catalyst and, consequently, increase the DOC temperature. In
this section, we compute HC step response and compare it
against T in step response.

2.1 Model with Heat Source

During the regeneration process, the DOC is working at high
temperatures, which ensures that the rate of conversion of
reductants is high. Moreover, large quantity of HC is injected
to generate exothermicity. Consequently, the inlet fraction of
this reductant is very important, and its effect is dominating
over other species’. By construction, a DOC is designed to
yield large heat and mass transfer. These transfers are very
effective, and the time scales implying the thermal phenomena
are much lower than the ones implying chemical reactions. For
the experiments presented in § 2.3 gas flows through the DOC
approximatively 1000 times faster than the outlet temperature
response time. For these reasons, to model the DOC thermal

behavior, we propose to encompass all the chemical reactions
in a “source term Ψ”, leading to the following model
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where Ψ(z, t) is the control variable and T in(t) is regarded as a
disturbance. Ψ includes the sum of the enthalpies of the various
reactions taking place inside the DOC. We formulate a strong
simplifying assumption. Namely, we assume that the rate of
reaction is independent of the species concentration. Further,
we also assume that it is independent of the temperature. In
other words, Ψ is constant over some spatial interval. These
assumptions are supported by experimental identification re-
sults of § 2.3. Over the whole range of considered operating
conditions, the obtained results are quite accurate. We note
Lc the length of the portion of the DOC where the enthalpy
of reaction is released (see Fig. 1). Formally, we consider the

Fig. 1. HC reaction zone

following discontinuous function{
Ψ̂(z, s) = α/s, 0 ≤ z ≤ Lc
Ψ̂(z, s) = 0, Lc < z ≤ L

(5)

Then, several steps of operational calculus on (4) lead to
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with Â(s) =
1
v

(
s+ k1 −

k1k2

s+ k2

)
and B̂(s) =

k1

v

α

s(s+ k2)
.

In (6), the first term corresponds to the transfer from the inlet
temperature T in(t) to the output T (Lc, t), while the second
term corresponds to the transfer from the input signal Ψ̂ de-
fined in (5) to the output T (Lc, t). The linearity of the two
effects will be used to study these phenomena separately in
our control strategy. Further, for z > Lc, equation (4) gives
T̂ (z, s) = T̂ (Lc, s) exp
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)
and, we get
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Â
exp

(
−Âz
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Eventually, by an inverse Laplace transform of (7) (Abramowitz
and Stegun, 1965), one obtains the reductant step response
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2.2 Fitting the heat source model with an equivalent no-source
model

The static gain GT in of the transfer from the inlet temperature
T in to the output T (z, t) is equal to 1 (Lepreux et al., 2008).
The static gain Gu of the transfer from the input signal Ψ̂ to the
output T (z, t) can be computed using (7)

Gu = lim
t→∞

T (t) = lim
s→0

sT̂ (s) =
k1αLc
k2v

(9)

These last formulas are used during the identification and
normalization process in this Section and for controllers design
in Section 4. In practice, it is possible to relate α, Lc, the
current HC conversion efficiency and the amount of injected
reductants (which is itself related to the injector energizing
time): for a given (identified)Lc, α can be regarded as a control
variable.

In Fig. 2a, it is shown that the overall shape of the reductant
step response, computed with (8), is very similar to the T in
step response (3). This similarity suggests that it is possible

(a) Comparison between HC step response and T in step response. Analytic
results obtained respectively from (8) and (3).

(b) Comparison between HC step response (model with source) and adapted
T in step response (model with no source)

Fig. 2. HC step response approximation in various operating
conditions

to approximate HC step response by T in step response at
the expense of an additional identification procedure. We show
in Fig. 2b that it suffices to adapt the DOC length, using the
model with no source (1), to get results very close to the ones
obtained with the model with source (4) 1 . In other words,
generating enthalpy by HC is quite equivalent to generating
1 further details of this adaptation will be treated in a forthcoming publication

enthalpy by T in with a DOC having a shorter length. Hence,
the temperature response of the DOC associated to the T in vari-
ations are slower than those associated to HC. From a control
point of view, this allows us to reject the T in disturbance.

2.3 Experimental model validation

Fig. 3. Experimental HC step response identified to T in

model (1) in various operating conditions

As we stressed it in the previous discussion, considering an
additional model adaptation of parameters (Lc is a piecewise
linear function of v), model (1) and model (4) yield pretty
similar results. In Fig. 3, we present experimental HC step
responses under various operating conditions. To obtain these
data, a 2.2-L 4-cylinder Diesel engine equipped with a 3-
inch long 5.66-inch diameter 400-cpsi DOC was tested. These
responses are well represented by the equivalent T in step
response (3) corresponding to the model with no source (1). It
is shown that the model with no source kindly fits experimental
data, usually described using a source term.

3. APPROXIMATING DOC EQUATIONS

We wish to simplify the previous model further. The desired
representation is a first order plus delay model, which belongs
to a class of models relatively easy to design a controller
for (Silva et al., 2005).

For small values of |s| (i.e. the range of low frequencies), the
DOC transfer function (2) can be approximated in the following
way

exp
(
m(z)
s+k2

)
= exp

(
−(1− ν)k1zk2v

s
)

exp
(
k1z
v

(
(1− ν)s/k2 + 1

1+s/k2

))
≈ exp

(
−(1− ν)k1zk2v

s
)

exp ((1− ν)s/k2 + 1− s/k2)
k1z

v

≈ exp
(
−(1− ν)k1zk2v

s
)

exp
(
k1z
v

)
exp (−νs/k2)

k1z

v

≈ exp
(
−(1− ν)k1zk2v

s
)

exp
(
k1z
v

) 1
1 + ν k1zk2v

s

where ν ∈]0, 1[ can be seen as a weighting variable which
will be discussed later on. This leads to the following transfer
function as an approximation of (2)
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As a result, one obtains a delayed first-order step response
exp (−δs)

1 + τs
where τ = ν

k1z

k2v
and δ =

z

v
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k1z

k2v
.

The weighting variable ν relates τ and δ. Explicitly, we get
δ = z

v + k1z
k2v
−τ. In an identification standpoint, the next step is

to determine a constraint to set the value of τ , which implicitly
sets the value of ν.

Inflexion point The second-order derivative of the step re-
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Using the following asymptotic expansion of Bessel func-
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The equation of the inflexion point, of which tI is the unknown

abscissa, is given by
∂2
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Parameters τ and δ Note f the delayed first order model step
response f(t) = 1 − exp

(
− t−δτ

)
. Let tE be the solution of

f(tE) = T (z, tI). We impose the slope of f at abscissa tE to
equal the slope of T at tI , i.e.

d

dt
f(tE) =

∂

∂t
T (z, tI) (11)

then, we get τ =
1− T (z, tI)

exp (−2k1z/v)k2I1(2k1z/v)

To sum up, with the additional requirement (11), it is possible
to write explicit values of τ and δ

τ =
1− T (z, tI)

exp (−2k1z/v)k2I1(2k1z/v)

δ =
z

v
+
k1z

k2v
− 1− T (z, tI)

exp (−2k1z/v)k2I1(2k1z/v)

(12)

Typical identification results are presented in Fig. 4. Two differ-
ent cases that are representative of real DOC parameter values,
as motivated by Lepreux et al. (2008), are reported.

Fig. 4. Matching the DOC response with a first order plus delay
model. k1=400, k2=0.35, v=4 (up). k1=1591.09, k2=0.82,
v=4.597 (down).

Further approximation of τ and δ It has been shown that
the choice of the constraint (11) leads to good matching of re-
sponses results. Further approximation can be made to prevent
evaluation of the Bessel function. In experiment of Fig. 4, we
get 3

8
1

2k1z/v
� 1 for the two presented cases. Referring to (10),

this validates the use an asymptotic expansion of I1. We can
make the approximation I1(2k1z/v) ≈ exp (2k1z/v)√

2π2k1z/v
. Then, we

get the following expressionsτ = 1
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√
π ·
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(13)
It is interesting to note that, considering requirement (11), δ
does not have an hyperbolic behavior with respect to v. Experi-
mental results for evolution of τ and δ are shown in Fig. 5 (see
also Frobert et al. (2009) for more complete results and details
about the identification process). Corresponding analytical val-
ues are obtained using constant parameters k1 and k2, and Lc a
function of v as mentioned in section 2.

Fig. 5. Experimental evolution of δ and τ versus v

To sum up, the derived model is a combination of two first order
plus delay models as shown in Fig. 6. The first one uses T in as



Fig. 6. Scheme of the first order plus delay model

input and τT in and δT in parameters are evaluated by (12) using
the whole DOC length. The second one uses T in-equivalent-to-
Ψ as input, and corresponding τu and δu are evaluated by the
same formula (12) using a part of the DOC length as explained
in section 2. In both submodels, k1 and k2 are constant and
equal.

Despite the fact that the proposed method of approximation
does not allow to evaluate errors a priori, it is shown in sim-
ulations of subsection 4.2 that these methods provide accurate
results for real cases of engineering interest such as those of a
DOC used in driving conditions.

4. CONTROLLER PRESENTATION

4.1 Control Designs

Based on the results of section 3, we consider three classical
control designs and evaluate their performance. The first two
designs are simple PI and PID controllers with a feedforward
term as presented in Fig. 7. We use respectively Tavakoli and
Fleming (2003) and Tavakoli and Tavakoli (2003) parameters
tuning for the PI and the PID controllers. Parameters τ and δ are
evaluated using (12). The third controller, presented in Fig. 8,

Fig. 7. Control scheme for the PI(D) controller

consists of a Smith controller (Abe and Yamanaka, 2003). For

Fig. 8. Control scheme for the Smith controller

the three controllers, the gain Gu is calculated using (9). The
FF block is dedicated to treating the T in disturbance. Here, we
use a standard feedforward strategy given by

FF =
GT in

Gu

τus+ 1
τT ins+ 1

exp (− (δT in − δu) s)

Transfer functions for the Smith controller are given as follows

PISmith =
1
Gu

(
1 +

1
τus

)
IMC = Gu

1
τus+ 1

The Delay operator applies a delay of δu. The robustness filter
F is a first order filter which time constant set to 1 s. It is
not primordial here because, thanks to the presented detailed
analysis of the DOC equations, delays are well approximated.

4.2 Simulation Results

First, we study the influence of a disturbance step variation.
Then, we present control performance during a NEDC driv-
ing cycle. Simulation results are shown on the model with
source (4) with k1 = 870 s−1, k2 = 0.45 s−1, Lc = 0.0305 m,
L = 0.0762 m.

Basic performance Fig. 9 compares performance of the three
controllers for a setpoint change. Setpoint is risen from 0
to 50 at t = 200. At the end of the rise, the system is
disturbed by an important gas speed variation. These variations
are directly linked to driver’s power request, they are very fast
and cannot be avoided. Although both controllers show similar
tracking performance, the Smith controller shows much better
disturbance rejection. Similar results are presented in Fig. 10

Fig. 9. Step setpoint transition and step v variation for PI, PID,
and Smith controllers. T in = 0.

with a 20% error on the k1 parameter, implying important delay
misestimation. All three proposed controllers are quite robust
regarding this error.

Fig. 10. Step setpoint transition and step v variation for PI, PID,
and Smith controllers with a 20%-error on k1. T in = 0.

Performance on the NEDC cycle The three controllers are
now tested on a simulated NEDC cycle. Results are presented
in Fig. 11. In this case of a constantly-varying air flow rate,
the differences between controllers are very small. Similar
results are presented in Fig. 12 with a 20% error on the k1

parameter. Once again, the presented controllers show good
results regarding robustness on this fundamental parameter.



Fig. 11. PI, PID, and Smith controllers on NEDC cycle

Fig. 12. PI, PID, and Smith controllers on NEDC cycle with a
20%-error on k1

Conclusion The presented Smith controller requires more
computational effort than the presented PI(D) controllers and
shows some advantages in specific cases (setpoint transition,
large air flow rate variation). It should be discussed based on
further experimentations if it is necessary to use it or not for
every specific case of application. It should be noted that its
major drawback (lack of robustness toward a misestimation
of the delay) has been circumvented thanks to the presented
detailed analysis of the DOC equations.

5. CONCLUSIONS AND FUTURE WORKS

Control-oriented DOC modeling has been validated with exper-
imental data in a former work (Lepreux et al., 2008). Grounding
the current work on these equations and using several steps
of approximation lead us, in this paper, to present a simple
delayed first-order control-oriented model to approximate the
DOC thermal behavior. This model is used as a starting point
for control design. Interestingly, presented controllers require
no particular tuning effort. They are tested in simulation on
NEDC driving cycle. First, a simple PI or PID in which param-
eters are scheduled using developed approximations, reveal to
be overreactive in certain specific cases. Alternatively, a Smith
design shows good results and turns out to be fairly robust.

The presented experimental results allow a good level of con-
fidence in our model. However, the next step is to present

experimental results on the driving cycle using the proposed
controllers.

A significant part of performance achieved by controllers pre-
sented in this paper, is due to the feedforward treatment of
disturbances. To simplify the analysis, the presented controllers
use classical feedforward control laws. However, going deeper
into analysis, allows to achieve much better results. This feed-
forward control will be fully detailed in a forthcoming publica-
tion.

Being a part of an integrated system in the vehicle, the DOC
is subject to whole class of reductants oxidizing onto it. It is
worth properly estimating their flow, resulting from in-cylinder
combustion, because it represents important disturbances for
the DOC outlet temperature controller. This estimator is the
subject of future works.
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