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Abstract: A recent study (Desborough and Miller, 2001) revealed that a great majority of the control 
loops that operate in industry use the PID (Proportional-Integral-Derivative) controllers. Furthermore, the 
study has shown that more than one third of these loops were switched to manual for a considerable 
period of time, indicating poor behaviour of the controllers’ performance. As was also reported, the gap 
between the industrial practice and the process control theory remains unchanged over the years, 
indicating that industry is looking for simple and easy to use technologies. The present research offers an 
alternative control scheme that intends to be a step towards introducing a new technology for practical 
implementation in industry. The controller is developed aiming to emulate human operators’ actions 
when manually controlling SISO systems, subject to disturbances. The developed control scheme is 
based on an intuitive hypothetical model that describes the way human operators (HO) act in a manual 
control loop, generating the Human Operator Based Intuitive Controller (HOBIC). Since human 
operators typically use vague terms when describing control actions, it is natural to use fuzzy logic to 
express manual control actions.  The HOBIC is then extended using the Fuzzy Logic theory. Membership 
functions within Fuzzy-HOBIC are tuned using a genetic algorithm (GA). The tuning does not require a 
process model. It is based on historical process operation data containing manual operation actions from 
experienced operators. The traditional GA is modified to cope with real valued optimisation variables and 
their constraints. Results show that the hypothetic model created for the HO’s actions is appropriate, 
since the generated control actions by the HOBIC and Fuzzy-HOBIC can approximate those of human 
operators. The control signal generated has the same discontinuous nature of the HO’s one.  
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1. INTRODUCTION 

Process Control theory has been well explored over decades 
to, at first, automate the manual control loops and thereafter, 
to maintain and improve them. However, it is observed that 
there is a gap between the Industry and the state of the art 
theory (Desborough and Miller, 2001). Industry presents, 
very often, a high resistance to put into practice what was 
recently developed. As a result, the vast majority of the 
control loops observed operates using traditional PID 
(Proportional-Integral-Derivative) controllers. Such kinds of 
controllers are very simple to apply and understand, when 
compared to other more advanced approaches. 

However, recent studies have revealed that a great part of 
those PID control loops are having a poor behaviour or are 
operating in manual. As an example, Desborough and Miller 
(2001) published a survey showing that 97% of the 
regulatory controllers from over 11,000 control loops of 
refining, chemicals, pulp and paper industries use the PID 
strategy. Furthermore, this work mentions that only one third 
of these controllers provide an acceptable performance. It is 

also commented that this fact is in accordance with the work 
of Bialkoski (1993). 

This leads to the challenge of investigating those control 
loops to verify if they can be improved by simply reviewing 
the applied PID strategies or, in some cases, by studying the 
applicability of new techniques. Nevertheless, being aware of 
Industry’s inertia to new developments, the challenge is even 
greater: to develop a control strategy with a great practical 
appeal, so it can be easy to understand and apply. 

In the authors’ experience, very often, newly developed 
control strategies are difficult to understand by the operators, 
the end users of the controllers. Hence, at the first indication 
of bad behaviour of the loop, the operators simply switch the 
controller to manual and if the process engineer does not 
verify what caused the problem, the operator normally will 
not turn it into automatic again. This will reinforce the 
statistics of loops in manual in Industry and quickly put the 
new technology into disrepute. 

The review by Desborough and Miller (2001) also explicitly 
shows that 36% of the analysed PID loops are operating in 
manual for at least 30% of the observed data (5,000 samples 



    

at the dominant system time constant). Hence, almost 4,000 
controllers have been switched to manual for a considerable 
amount of time. 

This work has the objective of developing a technique which 
is easily understandable by the operators. By doing so, the 
end users of the control loop will tend to support the idea and 
maintain the controller in automatic. 

One way of getting support of the operators is to make the 
control loop behave as if the loop is in manual. In other 
words, the controller has to give actions to the final control 
element in the same way as the operator would do, if he was 
controlling the loop. If the new controller manages to mimic 
this behaviour, it is less likely that the operator will switch 
the controller to manual. 

Nevertheless, trying to emulate the operator’s actions in a 
control scheme is not something new. Until 1966, over 200 
works related to this subject were published, according to 
Costello and Higgins (1966). 

The great majority of the research on Human Operator (HO) 
modelling in the past was for application in mechanical 
systems, such as aircrafts and vehicles dynamics (Kleinman, 
Baron and Levison, 1970). Investigating more recent papers 
in this field, it can be noticed that this area of modelling the 
human behaviour for applications in control systems still 
attracts the researchers’ attention as can be seen by the works 
of Enab (1995); Zapata,  Galvão and Yoneyama (1999); 
Ertugrul and Hizal (2005). However, there is still a lack of 
real applications of such control technique in the Process 
Control field. 

The present research aims to construct a control system with 
direct application in the continuous Process Control Industry, 
also by modelling Human Operator actions. However, it is 
different from the vast majority of the previous works in this 
modelling field. Due to the fact that the system dominant 
time-constants in the Process Control area are, in general, 
greater than in the mechanical systems, the concern about the 
HO’s reaction time becomes negligible. Hence, the HO 
modelling techniques applied by Kleinman, Baron and 
Levison (1970a, b) are not suitable for sluggish Process 
Control applications. In the same manner, Zapata, Galvão and 
Yoneyama (1999) presented a mechanical application where 
the system time-constant had the same order of magnitude of 
the HO responses. As a result, an ARMA (autoregressive 
with moving average) model for the HO had to be identified 
to smooth the operator actions, considered to be noisy and 
less consistent than the ARMA model ones. 

Another important issue to be discussed is the 
implementation strategy that the recent works used to model 
the HO control actions. They applied a model-free type 
technique. In other words, the model was extracted based 
upon input-output data, either by using Neural Networks 
approach (Enab, 1995), Neuro-Fuzzy techniques (Ertugrul 
and Hizal, 2005) or simply by extracting Fuzzy rules directly 
(Zapata, Galvão and T. Yoneyama, 1999). 

Fig. 1: Fictitious representation of a Manual control signal 
and a generated control signal using a model-free approach. 

Although the model-free approach is able to approximate the 
HO behaviour, as the results of these works show, it fails to 
present a clear and easily understandable description of how 
the HO behaves and which rule system it uses to generate the 
actions. Even when applying Fuzzy Logic (FL) technique 
directly, as done by the work of Zapata, Galvão and T. 
Yoneyama (1999), the model-free approach generated a set of 
15625 rules, which is quite difficult to understand and 
maintain in a practical application. 

In the present work, a model-based approach is applied using 
the FL theory. Hence, the number of generated Fuzzy rules is 
expected to be much less than when using the model-free 
approach, and therefore easier to understand and apply in the 
Process Industry. 

The work developed by Enab (1995) is of particular interest 
because it was related specifically to Process Control. The 
application presented was the control of the level in a tank, 
which has a nonlinear behaviour. This paper shows that the 
manual operation can be approximated using a Neural 
Networks approach. However, the generated control signal is 
continuous, compared with a “stair-like” manual signal, as 
can be seen by Fig.1. The difference in the signal’s nature is 
clear. On the other hand, a FL model-based approach would 
be able to produce a “stair-like” signal, if the proposed rules 
that comprise the Human Operator model are designed to 
perform this task. Nevertheless, one disadvantage of the FL 
model-based system is that the resultant Fuzzy Logic 
Controller (FLC) will need to have its parameters adjusted so 
it will be able to reflect the behaviour of a given operator. 
Thus, these Membership Functions (MFs) have to be 
appropriately adjusted so that the generated control signal 
approximates the HO behaviour. 

One way to cope with this disadvantage of the model-based 
FL approach is to come up with an automatic procedure for 
finding the appropriate adjustments of the MFs. In this work, 
this procedure is called “tuning”. As there are many possible 
combinations for the MFs parameters, the search space for 
the tuning procedure is inevitably large. To solve such kind 
of high dimensional search space problems, Genetic 
Algorithms can be applied (Orvosh and Davis, 1994). In this 
work, a Genetic Algorithm (GA) is developed to tune and 
validate the proposed FL model. 

The remainder of this work is organised as follows. Section 2 
gives a general idea of the desired behaviour of the developed 
controller based on a hypothetic model for the way the HO 
acts in a manual control loop. In Section 3, the controller is 



    

formally presented and its natural extension, via FL approach 
is achieved. In Section 4, a Genetic Algorithm (GA) is used 
to select the appropriate FLC parameters. A nonlinear 
Process Control application is tested with the developed FLC 
to compare the generated control actions with the manual 
operation in Section 5, where the results of the system 
simulation and discussion are presented. Section 6 
summarises the conclusions of this paper and 
recommendations for future work. 

2. HUMAN OPERATOR BASED INTUITIVE 
CONTROLLER DEVELOPMENT  

2.1  Human Operator tasks and responsibilities 

In a process plant, commonly, the HO has the responsibility 
of maintaining the plant under control, mainly by 
manipulating the final control elements, in manual loops, or 
by changing the controllers’ set-point (SP) values.

The first concern of the operators is about safety. Right after 
the security concern is the production task. The production 
throughput should not decrease in time. Supervisors are 
always checking for production problems and possible causes 
of such incidents. 

2.2  Human Operator’s behaviour model 

Two modes of operation may be defined for the HO: 

A. When changing the operating conditions (SP-Tracking); 

B. When rejecting disturbances (Disturbance Rejection). 

In the first mode of operation (Mode A), the operator, to not 
disturb the system, will change the operating conditions only 
when necessary by slow changes in the final control element. 
This tends to minimise some problems such as interactions 
between loops, for example. This manual procedure is 
equivalent to changing the controller SP, when it is in 
automatic. Hence, Mode A is called SP-Tracking mode of 
operation. In Mode B, to reject a given disturbance, the 
behaviour of the operator is normally more aggressive. This 
is natural, since his task is to maintain the process plant under 
control.  

An intuitive algorithm to describe the way the operator 
adjusts the final control element (Control Valve, for 
example), considering a single input single output system, 
subject to disturbances, can be described as follows: 

1) Is the PV following the desired path (SP)?  

If ‘Yes’ then “Do nothing. The process is under control” 

Else  

If Mode A: - apply Mode A procedure; 

If Mode B: - apply Mode B procedure; 

End 

Fig.2: Intuitive HO behaviour when in Mode A of operation. 

Fig. 3: Intuitive HO behaviour when in Mode B of operation. 

2) When in Mode A: 

Manipulate the Control Valve appropriately and wait for the 
system to react. If the trend of the PV is already going to the 
desired SP with an appropriate “velocity” do not change the 
Control Valve value. However, if the PV trend is going too 
“fast” or too “slow” to the desired SP, change the Control 
Valve appropriatelly and wait for the system’s response 

3) When in Mode B: 

Perform the same actions done in Mode A, but with more 
aggressiveness, that depends upon the value of the PV.  

From Fig. 2 and Fig. 3, some subjective terms mentioned in 
items 1, 2 and 3 such as “velocity”, “slow” and “fast”, are 
clarified. It can be observed that as the operator inspects the 
PV, he determines if the PV is under control by observing 
three variables, mainly: 

• Variable 1 – Angle that the PV trend makes with respect to 
the desired SP; 

• Variable 2 – Distance between the PV and SP; 
• Variable 3 – Is the error increasing or decreasing?



    

(a) (b) 

(c) 

Fig.4: Variables used to encapsulate the HO's behaviour in 
the HOBIC. 

Hence, the action taken in the Control Valve will be 
generated after analysing these three variables. After the 
action, the operator has to wait some time until the system 
reacts to it. The minimum time to wait ( wait�t ) should be 
greater than the Process time-delay. Thus, after observing the 
result of his action, the HO judges again the variables 1, 2 
and 3 and takes another action or waits, if the PV is already 
under control again or if the PV trend is behaving as 
intended.  

The PV is considered to be “behaving as intended” if it is 
approaching the SP within a given range of angles 
(“velocity”) at a given distance from the SP that the operator 
establishes in his mind for that specific system. Therefore, if 
the angle is not within the desired range of values for a 
specific distance away from SP, then the control action is 
increased or reduced appropriately. From Fig.2 and Fig.3 it is 
clear that for SP-tracking (Mode A) the actions are less 
aggressive than when rejecting disturbances (Mode B). These 
figures also show that the HO has in his mind imaginary 
thresholds to determine how far from the SP the PV is 
(CTRL_TSH and DST_TSH).  

2.3 The HOBIC and its natural extension –Fuzzy-HOBIC 

Fig. 4 suggests the way variables 1, 2 and 3 are obtained. 
Variable 3, denoted as ErrorSignal (ES), reflects whether the 
error between SP and PV is increasing (“+1”) or decreasing 
(“-1”). Variable 2, shown in Fig. 4(b), defines the absolute 
value of the error percentage between PVact and SP, i.e. 
ErrorPercentage (EP). The reason for defining the distance 
between PV and SP as an error percentage measure is 
because the operator tends to analyse the PV value relatively 
to its desired value to judge if the PV is close or far from the 
SP. For example, for SP values of 100 units, deviations of 3 
units can be considered to be “small” (3%) by the operator, 
and no action would be taken. However, if the SP is zero, the 
EP will be, by definition, the absolute value of the PV times 
100%. Variable 1 defines the angle, in degrees, that the PV 
trend makes with the SP, denoted by Slope (S) in Fig.4(a).  

Fig. 5: Fuzzy-HOBIC Linguistic variables. 

The Slope can be obtained numerically using Multi-variable 
Least Squares (LS). From Fig. 4(a), one can notice that the 
angle is obtained by using five samples (PVact and the past 
four samples). This is a good compromise between being less 
sensitive to the presence of noise and getting the actual PV 
trend. It is being assumed here that the sampling period used 
is sufficiently low to capture the system dynamics (eg.: 10% 
of the dominant time-constant) and sufficiently high to not to 
capture only the noise dynamics.  

After defining how the variables 1, 2 and 3 are determined in 
the HOBIC, the next step is to specify the thresholds 
CTRL_TSH and DST_TSH. The Control Threshold is, by 
definition, the limits within which the operator judges that the 
system is under control and no action is taken, when the PV 
has “small” Slope values. The Distant Threshold is obtained 
by determining the distance between PV and SP, when the 
operator’s actions start to increase significantly. These limits 
are also automatically detected (Section 3). 

2.4 Determining the HOBIC’s rules 

To be able to embed in the HOBIC the rules that the operator 
is using, four angle limits are defined: L0� , L1� , L2� , L3� . The 
first angle limit ( L0� ) is a dead band limit. In other words, 
the HOBIC will consider that the Slope is zero if S is less 
than L0� . The other three limits are distributed from L0� to 
90 degrees, dividing this region into intervals. For each 
region of Slope values and considering the EP and ES 
variables, a specific action is taken in the Control Valve. 
Judgment about what action is to be taken given the system 
state (S, EP, ES) is performed by a set of 20 rules. However, 
these rules can be simplified by applying the FL approach.  

The actual HOBIC variables S, EP and ES are considered to 
be linguistic input variables. The Linguistic values for these 
variables are as follows: 



    

Table 1: Fuzzy-HOBIC rules definition. 
Rul
e No 

Rule Definition Abs 
(deltaAction) 

1 IF (S is zero) and (EP is small) zero 
2 IF (S is zero) and (EP is medium) small 
3 IF (S is zero) and (EP is big) medium 
4 IF (S is small) and (EP is small) small 
5 IF (S is small) and (EP is medium) small 
6 IF (S is small) and (EP is big) medium 
7 IF (S is medium) and (EP is small) small 
8 IF (S is medium) and (EP is medium) and (ES is 

negative) 
Zero 

9 IF (S is medium) and (EP is medium) and (ES is 
positive) 

medium 

10 IF (S is medium) and (EP is big) and (ES is 
negative) 

zero 

11 IF (S is medium) and (EP is big) and (ES is 
positive) 

big 

12 IF (S is big) and (EP is small) medium 
13 IF (S is big) and (EP is medium) medium 
14 IF (S is big) and (EP is big) and (ES is negative) small 
15 IF (S is big) and (EP is big) and (ES is positive) max 

Fig. 6: Fuzzy-HOBIC output variable description. 

• Slope (S): “zero”, “small”, “medium”, “big” 

• ErrorPercentage (EP): “small”, “medium”, “big” 

• ErrorSignal (ES): “positive”, “negative” 

The Fuzzy-HOBIC input variables are described in Fig. 5. 
Each linguistic value is mathematically defined as a MF. 
Applying FL approach, the rules number is reduced to 15. 
They are shown in Table 1. This happens without loss of 
generality because of the advantage that the fuzzy rules give 
of activating more than one rule at a time.  

It is important to notice that the control action is shown in 
Table 1 as an absolute value. The sign of deltaAction, is 
determined by observing the ES value. The Fuzzy-HOBIC 
output variable (deltaAction) is shown in Fig.6. About Fig. 6, 
the linguistic values “zero” and “max” are applied to force 
the Defuzzification process to give the numeric outputs zero 
and maxDelta, according to its respective fuzzy rules. 

The process time-delay, minDelta and maxDelta values are 
assumed to be known inputs that depend upon the application 
and the HO’s behaviour, as well as the times involved to wait 
for the system to react, after the control actions are given.To 
cope with the disadvantage of having many parameters to 
tune for this controller, an automatic method of tuning the 
developed Fuzzy-HOBIC using a Genetic Algorithm (GA) is 
developed. 

Fig. 7: Fuzzy-HOBIC (dashed lines) vs. Manual Operation 
(solid lines). Step up test (+20%). 

Fig. 8: Fuzzy-HOBIC (dashed lines) vs. Manual Operation 
(solid lines). Step down test (-20%). 

3. APPLYING A GENETIC ALGORITHM TO TUNE THE 
FUZZY-HOBIC 

The objective of the GA is to find values of the 14 parameters 
(P1-P14) that will make the Fuzzy-HOBIC approximate a 
given HO’s behaviour. The closer the Fuzzy-HOBIC’s 
actions are to the HO’s ones the better is the tuning. A 
suitable objective function, is given by (1), where 

(i)Uman and (i)UFHOBIC represent the sample ‘i’ of the 
manual and the Fuzzy-HOBIC actions from a total of N 

available samples, respectively. 

�
=

−=
N

1i

2
FHOBICman

N
(i))U(i)(UJ                                     (1) 

For the developed GA, an elitist strategy is used 
(Chipperfield, Fleming, Pohlheim and Fonseca, 1994). The 
initial population is split into two sets which are used to 
compose three sub-populations. The first set is composed of 
the best individuals of the population (smallest J values). This 
set composes the first and the second sub-populations. The 
first one has a low mutation rate, while in the second a high 
mutation rate is applied. The low mutation rate in the first 
sub-population is used to search for local minimums, while 
the high mutation rates for the second population is applied to 
find new regions of minimums, trying to avoid getting 
trapped in local minimums.  



    

Fig. 9: Fuzzy-HOBIC (dashed lines) vs. Manual Operation 
(solid lines). Disturbance Rejection up test (+20%).  

Fig. 10: Fuzzy-HOBIC (dashed lines) vs. Manual Operation 
(solid lines). Disturbance Rejection down test (-20%). 

A third sub-population is composed of the second set of the 
population. In this case, a high mutation is applied, because 
of the same reasoning used for the second population.  

The convergence criteria applied in this work is either when 
the best individual from the population does not change for 
more than 10 generations or when the maximum number of 
generations is exceeded. 

4.  RESULTS AND DISCUSSION 

The application chosen for testing the Fuzzy-HOBIC is 
controlling the level of liquid in a Tank, in the same manner 
as performed by Enab (2005). This is a very common 
nonlinear application in the process industry. For this specific 
application, it is also supposed that the level needs a tight 
control. The input flow control valve is used to regulate the 
tank level, while the output flow control valve generates the 
non-measured disturbance. After defining the application to 
test the Fuzzy-HOBIC it is necessary to develop a simulation 
environment that reflects the proposed system to be 
controlled. A Graphical User Interface (GUI) was 
implemented to simulate the tank level system. 

Figures 7-10 show the results obtained when tuning the 
Fuzzy-HOBIC using the GA approach. It is important to 
notice, however, that two different tunings where used here: 
one for sp-tracking and the other for disturbance rejection. 
The manual operations where generated using the developed 
GUI, by an operator that got experienced by using the 

system. When controlling the level in manual, two objectives 
where followed: 1) Do not produce any overshoot, when 
tracking set-point; 2) Try to eliminate the disturbance as fast 
as possible without making large changes in the control 
valve. These objectives are in accordance with the HO’s 
behaviour, described in sub-section 2.2. As can be seen by 
the results, the operator’s behaviour could be well 
approximated the tuned Fuzzy-HOBICs, showing its “stair-
like” signals nature. 

5. CONCLUSIONS 

The results of applying the Fuzzy-HOBIC in a process 
control simulation have indicated that: 

• The rules used to describe the HO’s behaviour were 
adequate for approximating his manual operations in the 
application tested; 

• A process model is not needed to tune the Fuzzy-HOBIC. 

As recommendations for future work, it is suggested to test 
the developed controller in a real Process Control 
Application. Another possible application of Fuzzy-HOBIC 
would be to train apprentice operators, as already suggested 
by Zapata, Galvão, and Yoneyama (1999). 
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