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AbstractMany relevant process states in wastewater treatment are not measurable, or their
measurements are subject to considerable uncertainty. This poses a serious problem for process
monitoring and control. Model-based state estimation can provide estimates of the unknown
states and increase the reliability of measurements. In this paper, an integrated approach is
presented for the estimation problem employing unconventional, but technically feasible sensor
networks. Using the ASM1 model in the reference scenario BSM1, the estimators EKF and MHE
are evaluated. Very good estimation results for the system comprising of 78 states are found.
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1. INTRODUCTION

One of the key challenges in the operation of activated
sludge wastewater treatment plants (WWTP) is the uncer-
tainty about relevant process state values. E. g. the concen-
trations of active biomass and of soluble substrate are not
measurable online, but they considerably influence process
behavior. Some states such as the concentration of total
suspended solids are measurable, but their measurements
involve significant measurement errors. Reliable estimates
of these states are of great value for different operational
tasks such as process monitoring, online simulation, and
advanced multi-variable control. They are a necessity for
model-based control approaches based on dynamic process
models (e. g. Busch et al., 2007). Model-based state esti-
mation is one alternative to obtain such estimates. For a
given process model, its success depends on the choice of
a suitable hardware sensor network and of an appropriate
estimation method.

The intention of this paper is to present sophisticated
solutions to the state estimation problem for large-scale
WWTP and to investigate two distinct state estimation
approaches from the practitioner’s point of view. First,
an optimization-based approach determines the cheap-
est hardware sensor network that is required for the
state estimation task. Second, Extended Kalman Filter-
ing (EKF) and Moving Horizon Estimation (MHE) are
employed to estimate the unknown model states of the
large-scale WWTP model ASM1 employed in the BSM1
reference scenario (Copp, 2002). Large measurement er-
rors, plant/model-mismatch, and unknown inflow concen-
trations are considered.
� We thank the German research foundation (DFG) for the financial
support in the project “Optimization-based process control of chemi-
cal processes” (grant MA 1188/27-1). Also BMBF grant 03BONCHD
is gratefully acknowledged.
1 present address: Bayer Technology Services, Leverkusen, Germany
2 present address: BASF SE, Ludwigshafen, Germany

State estimation aims at statistically optimal estimates
of measurable and unmeasurable process states. Dochain
(2003) provides an overview of state and parameter es-
timation for chemical and biochemical processes focusing
on small models. Lubenova et al. (2003) use an adaptive
observer for a bioprocess models with 5 states. Goffaux and
Vande Wouwer (2005) compare an asymptotic observer, an
EKF, and a particle filter (PF) for a bioprocess model with
4 states. A model with approximately 40 states based on
the ASM1 successor ASM3 is considered by Chai et al.
(2007), who evaluate a KF, an EKF, and an unscented
KF (UKF). No rigorous MHE implementation for WWTP
has been reported.

Generally speaking, observers prove to be efficient for
small-scale models with maybe up to 10 states. For larger
models, observer design becomes challenging. An excep-
tion are asymptotic observers, which exhibit slow con-
vergence of the estimates to the true values, but which
do not require kinetic models. The EKF is the standard
choice for large-scale models. It is easy to implement and
much experience is available concerning its design and
tuning. It is not clear whether the related UKF and PF can
significantly outperform the EKF in practical implemen-
tations. The MHE is a promising option, but it is not clear
whether its increased implementation effort is justified by
better estimation results in WWTP applications. Large-
scale simulation case studies are rare, and real-life case
studies are not available. Also, while the properties of the
hardware sensor network are decisive for the success of
any state estimation approach, this aspect has not been
treated much with respect to WWTP applications.

Ideally, the choice of a sensor network, of a process model,
and of the estimator should be considered as an integrated
problem. This is beyond our possibilities today. The sensor
networks used in this study are obtained by a simple
optimization-based sensor network design approach. An
observable system for a given large-scale plant model



involving 78 differential states is obtained. An EKF and
an MHE are then employed as state estimators.

2. PROCESS AND PROCESS MODEL

The simulation study is based on the BSM1 (Copp, 2002),
which has been developed as a benchmark scenario for the
evaluation and comparison of different control approaches
for WWTP. The plant layout is depicted in Fig. 1. Qi and
Zi refer to the flow rate and vector of concentrations for
stream i. The inflow is mixed with two recycle streams
before entering the plant. Two denitrification basins (each
1000m3) are followed by three aerated nitrification basins
(each 1333m3). The first recycle a is withdrawn from the
last nitrification basin. The settler used in the BSM1 is
replaced by a membrane filtration unit, which is located
in a separate 250 m3 basin and which is modeled as an
ideal splitter. The product stream e as well as a second
recycle r and a waste stream w leave the membrane basin.
All basins are assumed to be well-mixed.

Figure 1. Modified BSM1 plant layout.

The degradation processes in the five biological basins
are described by the ASM1 (Henze et al., 1987) with
parameters taken from Copp (2002). The ASM1 describes
8 reactions and the component concentrations of inert
soluble matter SI , soluble substrate SS , inert particu-
late matter XI , particulate substrate XS , heterotrophic
biomass XB,H , autotrophic biomass XB,A, particulate
inert metabolism products XP , dissolved oxygen (DO)
SO, nitrate SNO, ammonia SNH , soluble organic nitrogen
SND, particulate organic nitrogen XND, and the alkalin-
ity SALK . The resulting model comprising mass balances
and the kinetic model contains 78 differential states. It is
formulated as a semi-explicit differential-algebraic model
according to

ẋ = f (x, z,u,p) , (1)
0 = g (x, z,u,p) , (2)
y = M · x . (3)

x are differential and z are algebraic states, u are the
manipulated variables, and p are the parameters. y are
the measurable outputs and M is the measurement matrix.
Note that for the BSM1 scenario, g(·) represents defining
equations that can explicitly be solved for z. Generally g(·)
suffices to be of index 1.

The BSM1 benchmark describes a dry weather scenario for
a period of 100 days with constant manipulated variables,
inflow rates, and inflow concentrations to reach a steady
state. This is followed by a period of 14 days with dynamic
inflow conditions. One of the three different dynamic
scenarios, the storm scenario, is used in this paper. It is
characterized by dry weather inflow superposed by storm
events on days 9 and 11. Exemplarily, the corresponding
inflow rate and ammonia inflow concentration are depicted
in Fig. 2.
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Figure 2. Inflow rate Q0 and ammonia inflow concentration
Z0,SNH
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3. SENSOR NETWORK DESIGN

The success of a state estimation approach depends on
the process model, on the state estimation algorithm, and
on the sensor network which supplies the measurements.
Optimal sensor network design aims at the sensor network
which leads to optimal state estimates at limited cost, or
similarly, reliable state estimates at minimum cost (Singh
and Hahn, 2005). So far, systematic approaches to this
important aspect of state estimation have been neglected
in the literature on WWTP applications. Rather, the
sensor network is chosen based on experience and intuition.

The approach to obtain the sensor networks as used in this
study is outlined in the following, details are presented
in Busch et al. (2009). A sensor network is fully defined
by the measurement matrix M (Eq. (3)), which relates
process states x to measurements y. By assigning prices
to the measurement hardware, a cost function φ = φ (M)
is obtained, which describes the cost of the sensor network.
The relevant constraint for the sensor network is that
it needs to yield an observable system. Hence, the non-
linear process model is linearized at many instances along
a typical process trajectory, and observability is checked
for each of these instances by a suitable criterium. Finally,
a genetic optimization algorithm is employed to find the
sensor network with the minimum cost φ (M) which still
fulfills the observability constraints (Heyen and Gerkens,
2002). The approach is applied to the simulation scenario
described in Section 2. Considering 8 technically feasible
measurements in 6 basins gives a total of 26·8 ≈ 2.8 · 1014

measurement configurations.

The following sensor network is found to give observability
at minimum cost: COD1, SALK,1, SO,2, XTS,5, where the
numeric index refers to the basin number. COD is the
chemical oxygen demand. This result is quite surprising,
as it implies that only four hardware sensors suffice to
estimate all 78 model states. Some standard hardware
sensors, which are commonly available at WWTP, are
added to the sensor network. These are DO sensors in the
aerated basins as well as nitrate, ammonia, alkalinity, and
COD measurements in the effluent.

4. STATE ESTIMATORS

State estimation refers to retrieving all states of a dynamic
system in real-time by utilizing available measurements,
possibly in combination with a process model. While
the state estimation problem is largely solved for linear
systems, e. g. , by the Kalman Filter, the problem becomes
significantly more difficult for non-linear systems. Most
methods are extensions of linear state estimators, such



as the extended Kalman Filter (EKF), described e. g. in
Becerra et al. (2001). A non-linear version of MHE is
presented in Rao et al. (2003). A comparison of EKF
and non-linear MHE applied to the BSM1 scenario is
presented in Section 5. In the following, main principles
and implementation details are reviewed.

4.1 Extended Kalman Filter

The Kalman Filter is a recursive method for state estima-
tion. It consists of a prediction step (time update) and a
measurement update. Past data is summarized and carried
on by means of suitable statistics. For a non-linear system
in discrete-time with measurement noise υk ∼ N (0, Ṽ)
and process noise μk ∼ N (0,W̃)

xk = fk (xk−1, zk−1,uk−1,pk−1) + μk , (4)
0 = gk (xk−1, zk−1,uk−1,pk−1) , (5)

yk = M · xk + υk , (6)
where k denotes the sampling instant, the respective filter
equations in their most common form are:

Time update:
x̂−

k = fk (x̂k−1, zk−1,uk−1,pk−1) , (7a)

P−
k =

∂fk
∂xk−1

∣∣∣∣
x̂k−1

· Pk−1 · ∂fk
∂xk−1

∣∣∣∣
T

x̂k−1

+ W , (7b)

Measurement update:
Kk = P−

k · MT
d · (Md · P−

k · MT
d + V)−1 , (8a)

Pk = (I − Kk · Md) · P−
k , (8b)

x̂k = x̂−
k + Kk · (yk − Md · x̂−

k ), (8c)
0 = gk (x̂k, ẑk,uk,pk) . (8d)

fk typically represents a numerical integration of the
continuous system Eq. (1) from time tk−1 to tk with
initial values xk−1. The matrix Pk is the covariance matrix
associated with the state estimates x̂k at sampling time k.
It reflects the confidence one can have in this estimate.
The matrices V and W describe the assumed covariances
of measurement noise and process noise, respectively. The
Kalman Filter gain Kk then reflects the trade-off between
the measurements and the process model.

4.2 Moving Horizon Estimation

A drawback of most estimation methods is that they can-
not deal with known constraints on the estimated states.
In the MHE scheme, such constraints are naturally incor-
porated in the optimization problem. The formulation also
allows to additionally estimate process parameters without
reformulating them as dummy states.
Unlike the EKF, the MHE uses more than just the most
recent measurements: At a certain time tj a number of M+
1 measurements (yj−M , . . . ,yj) associated with past time
instants tj−M < . . . < tj are explicitly used for estimation.
The length L of the time horizon [tj , . . . , tj−M ] is defined
as L := j − M . It is assumed that measurement and
process noise are normally distributed with zero mean and
covariance matrices V and W. Additionally, a Gaussian
distribution is assumed for x(tL) and p at the beginning of
the horizon, with expectation value (x̄L, p̄L) and a block-
diagonal covariance matrix ΠL with block elements Πx̄,L

and Πp̄,L.

The state estimation problem to be solved at time tk –
given the measurements yj for j = L,L + 1, . . . , k, the
known input u(t) for t ∈ [tL, tk] and given (x̄L, p̄L) and
PL – has the following form:

min
x(·),p

(
‖x(tL) − x̄L‖2

Πx̄,L
+ ‖p − p̄L‖2

Πp̄,L

+
k∑

j=L

‖yj−M · x(tj)‖2
V

)
(9)

s.t. ẋ(t) = f(x(t), z(t),u(t),p), t ∈ [tL, tk], (10a)
0 = g(x(t), z(t),u(t),p), (10b)
xmin ≤ x(t) ≤ xmax, (10c)
pmin ≤ p ≤ pmax, (10d)

where the applied norm is defined as ‖x‖2
V := xTV−1x.

At each new sampling time tk, one new measurement
vector yk enters the set of measurements, while the last
one yL becomes yL−1 and drops out of the horizon.
The initial weight terms ‖x(tL) − x̄L‖2

Πx̄,L
and ‖p −

p̄L‖2
Πp̄,L

(often called ”arrival costs”) summarize informa-
tion in the MHE problem prior to the horizon beginning
at time tL and also reflect a cumulated effect of process
noise on the process. A typical approach is to compute
the arrival costs by Kalman Filter updates of x̄L and p̄L.
As for the optimal length of the estimation horizon, no
general results are available, yet. Horizon length and the
weighting matrices V−1, Π−1 are the tuning parameters.
Note that an extended MHE formulation exists that ex-
plicitly incorporates process noise (Rao et al., 2003; Diehl
et al., 2006).
A necessity for the MHE scheme to work is a fast and
reliable numerical scheme for the constrained non-linear
dynamic optimization problem (9). The implementation
in this work makes use of MUSCOD-II (Leineweber et al.,
2003), which is based on a direct multiple shooting ap-
proach, see, e. g. , (Bock et al., 2007). For real-time feasibil-
ity, the least-squares problem at each time instant tk is not
solved to convergence. Instead, only one Gauss-Newton
iteration is performed, combined with a meaningful shift of
the problem variables. More information on this so-called
real-time iteration approach along with other implementa-
tional details can be found in Diehl et al. (2006).

5. CASE STUDY

EKF and MHE are applied to the process model and
scenario described in Section 2 and the sensor network
calculated in Section 3. The estimation task was made in-
creasingly difficult to evaluate the estimation performance
under nominal and more realistic conditions.
Only little effort has been devoted to the fine-tuning of the
estimators. This is intentional, since the aim of the study
is to investigate the practical applicability and general
performance of the two estimation methods. The tuning
matrices W and V for the EKF and the MHE reflect
covariances based on an assumed standard deviation of 5%
of the initial values x0 and ”initial measurements” M ·x0.
The MHE uses an estimation horizon of 5 measurement
samples.



The initial guess for x̂0 is deliberately set to 1.3 · x0 to
introduce a strong initial offset. The measurements are
corrupted by white noise υ with a standard deviation of
5% of the initial measurements: yk = M · xk + υk. The
sampling interval is set to 15 minutes. In the following,
the quality of the estimation results will be illustrated by
the estimates of the third basin, which is the one with
the least measurements (only DO concentration). The DO
concentration is not visualized as the estimates always
closely follow the true values.

5.1 Nominal process

In the first scenario, no process noise is added and per-
fect knowledge of the inflow rate and concentrations is
assumed. The estimated state values quickly converge from
their initial offset to the true values (not shown). Only
the concentration of XP shows some occasional offset.
The root of the cumulated squared relative error (RCSE)
averaged over all J samplings is used in the following as a
measure to compare the overall estimation performance:

RCSE =
1
J

J∑
k=1

√√√√ N∑
i=1

(
x̂i,k − xi,k

xi,k

)2

, (11)

where J is the number of samples xi,k and x̂i,k and N is
the number of states. The RCSE values for the different
simulation case studies are stated in Table 1. For the EKF
and the MHE with known inputs and no process noise,
RCSE of 0.3 and 0.4 are obtained, respectively.

Table 1. RCSE for the estimated states of
different simulation scenarios and estimators.

Estimator Known inputs, Known inputs, Unknown inputs,
no process noise process noise process noise

EKF 0.3 0.7 1.8
MHE 0.4 0.8 1.6

5.2 Process noise

Process noise is added to introduce plant/model-mismatch
to the problem. The process noise μ has zero mean and a
standard deviation of 5% of the initial states and enters
the discrete time simulation model according to

xk+1 = f (xk, zk,uk,pk) + μk , (12a)
0 = g (xk, zk,uk,pk) . (12b)

Noise-induced negative states representing concentrations
are set to zero to ensure that the equations remain phys-
ically feasible. The estimation results are similar for the
EKF and the MHE. Exemplarily, Fig. 3 shows the results
for the third basin using the MHE. Deviations from the
true trajectories are observed, but the estimation result
averaged over all samples remains satisfactory for both
estimators. The RCSE of the EKF and the MHE changes
from 0.3 to 0.7 and from 0.4 to 0.8, respectively (Table 1).
This result is not surprising, as the process noise now
deviates the measured outputs, complicated even further
by the process nonlinearities which are not fully captured
by the estimators.

5.3 Unknown inflow concentrations

Up to now it has been assumed that the inflow rate and
concentrations are perfectly known. This assumption is
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not realistic. While the inflow rate is indeed well-known,
at least part of the inflow concentrations are not. Typ-
ically historic data is employed to obtain daily, weekly,
and yearly trends and patterns of e. g. the concentrations
or the composition of the COD. However, a substantial
bias between these predictions and the real inflow con-
centrations must be expected. A worst case situation is
considered in the following: The inflow concentrations of
soluble inert matter SI , soluble substrate SS , particulate
inert matter XI , particulate substrate XS , heterotrophic
biomass XB,H , as well as soluble SND and particulate or-
ganic nitrogen XND are treated as unknown model inputs.
The inflow concentrations of DO SO, autotrophic biomass
XB,A, metabolism products XP , and nitrate XNH are
set to zero, and the alkalinity SALK is set to 7, which
corresponds to typical inflow characteristics as well as to
the BSM1. The inflow rate Q0 and the inflow ammonia
concentration SNH are measurable. The unknown inputs
need to be estimated together with the unknown states.

First, a new sensor network is determined by applying
the optimization procedure outlined in Section 3 to an
extended model, which considers the unknown inflow con-
centrations as additional model states (Busch et al., 2009).
The resulting sensor network is more complex than the
network used for the estimation of the nominal process,
but still technically and economically feasible:

XTS,1, SALK,1, BOD2, BOD3, SO,3, SALK,3 ,

SALK,4, COD5, COD6 ,

where BOD is the biological oxygen demand. The same
standard measurements as discussed in Section 3 are added
to the sensor network.



The estimation of the model parameters such as input
concentrations is an integrated part of the MHE imple-
mentation and thus can be pursued very easily (see Sec-
tion 4). For the EKF, the effort is slightly higher. Here,
to additionally estimate process parameters, these have to
be formulated as additional differential states xp obeying
the trivial differential equation ẋp = 0 with initial values
xp(0) = p. The EKF then estimates the augmented state
vector (xT xT

p )T. Note that the covariance matrix W has
to be adapted to the new state vector. The expected pro-
cess noise standard deviation of the unknown parameters
is specified as 5% of their nominal values. The initial guess
for the inflow concentrations is also disturbed by +30%.
Fig. 4 depicts the estimated states for the third basin.
The estimation performance is again satisfactorily except
for two states. The estimation of inert particulate matter
XI shows considerable offset from the true values. This
is, however, not severe, as inert matter does not affect
the reaction kinetics and is hence irrelevant for process
prediction. The second state to exhibit a significant offset
is the concentration of heterotrophic biomass XB,H . This
is more serious as heterotrophic biomass is responsible for
the degradation of substrate and nitrate. Whether the
offset is critical, e. g. in model-based control approaches,
needs to be evaluated in future research. Fine-tuning of
the estimator might further minimize the deviation. The
overall RCSE is 1.8 for the states (Table 1) and 2.0 for the
parameters.

Fig. 5 shows the estimation results for the states in the
third basin as obtained by the MHE. The results do not
differ much from those of the EKF. Again, the two states
inert particulate matter XI and heterotrophic biomass
XB,H show the largest deviations. From visual inspection,
the first seems to stay closer to the true value but then
exhibits a sudden and sharp drop which is not present
in the real trend. The overall RCSE for this case is 1.6
(Table 1) and hence slightly better than for the EKF. The
estimated parameters achieve an RCSE of 2.1.

The estimated inflow concentrations are depicted exem-
plarily for the EKF in Fig. 6. All estimates exhibit high-
frequent oscillations, which could probably also be im-
proved by fine-tuning of the estimators. The estimation
of the concentration of heterotrophic biomass XB,H again
shows a stronger offset during days 11 to 13 following
the second storm event but returns to the true value
eventually. The graphs of inert particulate matter XI and
particulate organic nitrogen XND show that the estimates
are not able to follow sudden concentration peaks (day 9).

The main trends in the inflow data are captured well, but
it is not clear especially with respect to the concentrations
of inert particulate matter XI and heterotrophic biomass
XB,H whether these parameter are actually observable. To
clarify the issue, additional scenarios have been calculated
which show that the parameters are indeed observable,
but that their influence on the noisy process and process
measurements is small, so that it is not possible to resolve
higher frequent variations Busch et al. (2009).

5.4 Computation times

A general belief that can often be found is that optimization-
based estimation methods such as MHE are impractical
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because of the excessive computation times to be expected.
Indeed the time required to solve a constrained optimiza-
tion problem to full convergence will necessarily be larger
than recursively solving the corresponding unconstrained
problem. However, the numerical approach sketched in
Section 4 can significantly reduce the computation times.
In the case studies described, the average computation
time for the MHE was in the range of a few seconds with a
maximum lower than 10 seconds on a Pentium 4 machine
with 2.8 GHz, 1024 kB L2 cache, 1 GB RAM under Suse
Linux 9.3. This is by far fast enough for the estimation
tasks for WWTP.

6. CONCLUSIONS

In this paper inflow and state estimation approaches for
large-scale wastewater treatment plants are presented. The
process is based on the reference scenario BSM1 and
employs the dynamic, non-linear process model ASM1.
The two prominent state estimators EKF and MHE are
evaluated. Large process and measurement disturbances as
well as unknown influent conditions have been considered.

The results show that it is possible to yield a fully ob-
servable system with an unconventional sensor network of
moderate complexity. Both the EKF and the MHE show
good estimation performance even in difficult conditions.
The EKF shows a marginally better performance for the
scenarios with known inflow concentrations. For unknown
inflow concentrations, the MHE delivers slightly better
state estimates. These do not fully justify the higher im-
plementational effort for the MHE. However, its simple
and straightforward handling of unknown inflow condi-
tions and parameters is an advantage over the EKF. The
computation times presented here show that the EKF as
well as the MHE are real-time feasible for WWTP.
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