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Abstract: Bias updating is a widespread adaptive procedure to allow inference models to pursue time 
variant features of a real world process. The aim of this work is to clarify the statistical consequences of 
bias updating to soft sensor estimates as well to point up the need of careful analysis of the effect of 
unmeasured disturbances on the true values of the variable of interest.  It is shown that bias updated 
inferences are unbiased estimates of the true value but yields estimates whose variance are 100% larger 
than the ones obtained with no use of bias updating. It is suggested the use of a weighting factor to bias 
updating in order to balance statistical benefits and penalties. A case study of a soft sensor for weathering 
of LPG in oil refinery exemplifies the concepts discussed. 
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1. INTRODUCTION 

The main goal of an industry is to operate as close as possible 
to the point where profit is maximum. It means that there 
should be no off-spec product and the lowest degree of 
product quality give-away should be achieved. Maximum 
profit is also related to the fact that the set of manipulated 
variables leads to lower costs by minimizing use of heat, 
steam, electricity, water etc.. 

 It may be hard if not impossible to accomplish this goal. 
Real processes are likely to be nonlinear and highly 
integrated causing modeling and identification prone to 
errors. In addition, long term operation makes processes more 
susceptible to hardware upsets (corrosion, fouling, 
mechanical failures) and to experience environmental 
disturbances as well qualitative/quantitative changes in 
physical-chemical properties of feed streams.  

Accurate knowledge of process actual model structure and 
parameters is essential if one intends to predict future states 
(for control and optimizing) or to diagnose safety risks. 
Unfortunately many relevant process variables are not 
available as frequently as desirable or even not available at 
all. For example, it is very common that physical-chemical 
properties related to quality control are measured by 
laboratory tests performed with a very low frequency when 
compared to process variables acquired by online sensors. 
Such process with differing sample rates for measured 
variables are known as multirate process (Ragahavan et al., 
2006). 

Most of times the long period of time to be awaited before 
new information about low frequency variables become 
available is unacceptable. It is necessary to make use of some 

inferential knowledge based on high frequency information 
about the process. If a sufficiently accurate model is 
available, the variable of interest can be estimated from high 
frequency process measurements x as long as model structure 
and parameters αααα are known: 

biasfy += ),(ˆ �x               (1) 

Every time a new measurement of the true value of y is 
available, an adaptive procedure can be used to adapt the 
inferential model. The only parameter updated through this 
one parameter correction is the independent coefficient in (1):  
bias = ),( �xfy − . This simple strategy is very common in 
industry as well in literature for optimizing purposes 
(Mercangöz and Doyle 2008; Jesus 2004; Singh 1997) or for 
soft sensors inferences (Sharmin et al. 2006; Mu et al. 2006; 
Tran et al. 2005).  

Some questions should be posed regarding the use of 
inferences as (1) for anyone who has to cope with a multirate 
process:  

- What is the best model structure f(x,αααα)? 

- How often should bias be updated? 

- How are inference errors affected by bias updating?

- What are the effects of unmeasured disturbances on 
inference errors? 

Those questions usually receive unequal importance. A lot of 
effort has been spent along time to answer the first question. 
Models have progressively become more complex by using 
the mathematical weaponry of process modeling 



    

(multivariable regression, PCA, neural networks, fuzzy 
logic). The second question is often answered based on 
practical matters as availability of laboratory technicians. The 
last two questions are normally disregarded in spite of their 
huge consequences on the estimates. 

The aim of this work is to pay attention to those usually 
forgotten questions by remembering the mathematical 
considerations implicit in models as (1) and answering, from 
a statistical point of view, what the benefits and penalties of 
bias updating are. 

2. MATHEMATICAL FOUNDATIONS OF BIAS 
UPDATING 

For a steady state system, the generic mathematical 
relationship linking the output variable, y, and all pertinent 
process variables, w, required by fundamental physical laws, 
may be expressed as: 

0),,( =cwyF               (2) 

where w represents the NW necessary variables to perfectly 
predict the unknown behavior of y given the NC constants in 
the vector of parameters, c. 

Two practical reasons explain why it is unlike that any real 
model would incorporate the whole set of NW necessary 
variables. The first one is the fact that NW may be large and 
would conflict with science´s parsimony principle. In this 
sense, a less complete description would be acceptable in a 
trade-off for simplicity under a certain allowable tolerance. 
The other reason is that several of the NW variables either are 
not measured or are not considered relevant by the scientist 
due to a methodological error. 

Taking these reasons under consideration one can split w into 
the subsets x and z. The first subset contains the NX 
measured variables that were chosen as relevant for the 
model. The second subset contains the remaining NZ = NW-
NX variables. It contains measured and unmeasured variables 
that should be part of a perfect model but were set apart. The 
complete description of the system behavior is then expressed 
as: 

0),,,( =czxyF              (3) 

In the process of justifying the possibility of a correction as 
proposed in (1) it is required that (3) be partially separable 
with respect to addition at least with respect to y. It requires 
that yFF ∂∂ )exp()/1( depends only on y (Viazminsky 
2008). If this condition is satisfied one can express (3) as: 

( )11 ,,)( czxFyg =            (4) 

Additionally, if the inverse function g-1 exists, then: 

( )( ) ( )2211
1 ,,,, czxczx FFgy == −           (5) 

Physical knowledge or empirical insight may lead to an 
attempt to predict y based on measurements x and parameters 
�  by means of a model )�x,(f . If z is an empty set and the 
whole influence of x on y is taken into account by )�x,(f  we 
have a perfect model. Otherwise one should expect a 
relationship as (6), where ( )33 ,, czxF  plays the role of bias 
as in (1). It should be noticed that (6) is derived from (5) if 

( )33 ,, czxF  is a separable function with respect to the set z. 

( )33 ,,,( czx�x Ffy +)=                        (6) 

The model built by the experimenter is )�x,(f . The invisible 
part of the true model is ( )33 ,, czxF . This term is captured by 
the bias term in a very common pragmatic approach 
assuming the form (1). 

Inference structure (6) is very attractive but it is valid only if 
the assumptions that allowed disregarding more generalized 
expressions (3)-(5) are true. If not, there will be no guarantee 
that successive inferred values will express the true values y 
even if no further disturbances alter the values of the set z. 
This can be seen by comparing two simple models. One 
represents a model as expressed in (5) (type A model) and the 
other one represents the less generic model expressed in (6) 
(type B model), for instance: 

type A true model:  y = (x+z)/x 

type B true model:  y =  x + z 

It should be noticed that the type B true model in this 
example shows no dependence of F3 on x. This class of true 
models yields the best possible performance for an adaptive 
experimental model as (1).  

Assuming that: 1) experiments to identify the inference f(x,α)
were carried out under controlled conditions in order to keep 
z at a constant value z0 in both cases and 2) perfect model 
identification led to inferences with the same mathematical 
structure than true models: 

type A inferred model:  y~  = (x+ z0)/x 

type B inferred model:   y~  =  x + z0

If the inferred models were parameterized by means of proper 
statistical criticism both inferred models will adequately 
represent the behavior of the variable of interest. However, as 
time passes, it is possible that z assumes values different of 
the one kept controlled along identification phase. So, if z 
assumes the value z1 and x=x1 at the moment of correction in 
both cases, according to the bias updating routine:

type A true value:  1y  = (x1+z1)/ x1,     

type A inferred value: 1
~y  = (x1 + z0)/ x1



    

   �  bias = y1- 1
~y  = (z1-z0)/x1        

          corrected inference: 1ŷ  = (x+ z0)/x + ((z1-z0)/x1)  

type B true value: y1  = x1+z1, 

type B inferred value: 1
~y  = x1+ z0

�  bias = y1- 1
~y  = z1-z0, corrected inference: 1ŷ  = x + (z1-z0) 

It is clear that, after bias correction, inferences derived from 
type B models will produce results as close to the truth as 
they were before the change of z value as long as this 
variable is kept constant from this change on. On the other 
hand, inferences derived from type A models will not behave 
this way because accuracy of the corrected inference will be 
affected not only by further changes of z value but also by 
additional changes in the x value because the nonlinear 
behavior is not captured by a single point correction. 

3. BIAS UPDATING PROCEDURE 

In order to describe the behavior of predictions of the value y
along time it is interesting to write inference model to allow 
time course to be taken into account: 
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where NS is the number of time samples of the process 
variable signals.  

Corrected values of y along time are obtained from bias 
updating according to: 

biasyy += ~ˆ             (8) 

where the array of time values of bias is built according to: 

bias1 = 0 

biask = ( ) ( ) 11~
−−+− kkkk

m
k biasssyy

leading to: 
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Vector ym contains measurements of the true values y
sampled with period at a lower rate, Tmeas, than primary 
variables of the model. Vector s is a binary set that indicates 
when true values ŷ are available: 

[ ] [ ][ ]TTmeasTmeasxTmeasTmeasx yy ...00 2)1(1)1(1 −−=my

[ ] [ ][ ]TTmeasxTmeasx ...1010 )1(1)1(1 −−=s

4. STATISTICAL IMPACT OF BIAS UPDATING 

Although equations (7-9) indicate the modus operandi of 
inference correction, it is not clear how our expectation about 
error values is affected. Since corrections are made at a low 
frequency the duration of their benefits will be affected by 
the probability of occurrence of new disturbances before a 
new gold standard measurement is ready, thus making 
possible another correction. A reasonable question would be: 
what benefits are obtained with periodic bias updating 
comparing with no bias correction at all? 

In fact, bias updating and no updating schemes are extreme 
points of a continuous range of possible single point 
corrections. Considering the weight parameterϕ ℜ∈ , 

]10[⊂ϕ , the time values y  are a weighted mean of bias 
corrected values (8) and values from the original inference 
model (7): 

yyy ~)1(ˆ ϕϕ −+=           (10) 

If samples of true values are taken with period Tmeas the nth

element suffers the effects of the last bias updating made at 
sample i = int(n/Tmeas)Tmeas, where int(x) retains the integer 
part of the floating point real number x: 

( ) nnnn y�)(biasy�y ~1~ −++=         (11) 

( ) ( )iinniinn yyyy�)(yyy�y ~~~1~~ −+=−+−+= ϕ       (12) 

Inference error at the nth element will be: 



    

iinnnnn yyyyyy ~~ ϕϕε +−−=−=           (13) 

Since nth and ith elements of the true values come from the 
same sample space as well nth and ith elements of the inferred 
values, their statistical moments are the same, i.e.,  

[ ] [ ]in yEyE =  and [ ] [ ]in yEyE ~~ = . Dropping indexes to 
simplify notation, it is possible to say that the expected error 
value is: 

[ ] [ ] [ ]yEyEE ~)1()1( −+−= ϕϕε          (14) 
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It can be seen that the bias update scheme expressed in (8) 
( 1=ϕ ) guarantees mean error value of zero if length of y
tends to infinity. If no correction is made ( 0=ϕ ), long term 
error mean depends on the ability of model ),( �Xf  to be an 
unbiased estimate of the true value. It is also possible to 
investigate the dependence of error variance on the choice 
ofϕ . From (13) it is possible to write: 

( ) ( )iinnn yyyy ~~varvar ϕϕε +−−=         (15) 

( )

)~,cov(2

)~,cov(2)~,cov(2)~,cov(2
)~var()var()~var()var(var

2

22

ii

niinnn

iinnn

yy

yyyyyy
yyyy

ϕ

ϕϕ
ϕϕε

−

−+−
+++=

               (16) 

For the same reason explained above )var( ny = )var( iy and 
)~var( ny = )~var( iy , making it more convenient to drop 

subscripts and simplify (16): 
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At the extreme points of ϕ : 
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With respect to the error variance the progressive updating 
( 1=ϕ ) doubles the value obtained when no correction is 
made ( 0=ϕ ). Confronting this result with the expected 
value of the error one can see that bias updating is associated 
with an expectation of unbiased mean value of estimates but 
it also causes a 100% increase in error variance. There would 
be a choice of ϕ  to cope with these consequences? In order 
to answer this question it is necessary to create a single 
objective function that combines both effects.  

As an example, a possible choice for such function could be  
[ ] )var(εεψ += E , choosing ϕ  that minimizes its value. 

However this function is too dependent of the problem 
specificities and units of measurement. In fact even the 
choice the objective function depends on the problem to be 
solved and on the needs of the plant personnel in order to 
fulfill several goals related to the industrial process. 

Taking this into consideration, it is suggested a very simple 
objective function, derived from the previous one. It 
represents an attempt to equalize the importance of the effects 
of ϕ  regarding each statistical moment. Such function could 
assume the normalized form: 

[ ] normnormE )var(εεψ +=          (18) 

where 
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Substituting (19-20) in (18): 
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The choice of ϕ  is made in order to minimize ψ  and is 
represented by the solution of: 

2/101 2 =�=−−=
∂
∂ ϕϕϕ

ϕ
ψ   (22) 

It is interesting to see how formalism of (21) and (22) 
conducts to a common sense value of ½ for the weighting 
factor in this case.  

5. CASE STUDY 

In this section it will be shown the statistical features of bias 
updating in a soft sensor to be implemented in an oil refinery. 
The process unity at study is a FCC debutanizer showed in 
figure 1. In order to improve quality control of liquefied 
petroleum gas (LPG) it is desirable to have online 
information about the relative amount of molecules with 
more than four carbon atoms present on LPG stream. A 
laboratory or field test usually carried out a few times a day 
measures weathering of LPG, expressed in temperature units, 
which is correlated to the ratio of heavier molecules. 



    

An empirical mathematical model of LPG weathering based 
on NX = 3 process variables feeds the model predictive 
control of the process unity with inferred values along time as 
in (7).  

For the purposes of this work, actual behavior of the unity is 
represented by data from customized process simulation 
software. The discrete mathematical space of operating 
scenarios has its basis formed by the Ninp = 4 process 
simulation input parameters as shown in figure 1.  

Figure 1 – FCC debutanizer. Process variables used as inputs 
for the process simulator: P1, F1, T1, T2.  

The subregion of operation considered for analysis was the 
regular mesh S (Nsc x Ninp) of equally spaced points around 
nominal condition of operation. This region of operation 
induces the subregion χχχχ (Nsc x NX) of the input variables of 
the empirical model of weathering. For simulation of long 
term operation a string of scenarios, Sstr (Lsc x Ninp),
representing the time course of conditions of operation, was 
assembled: 

indi ~ Unif(1, Nsc);  indi ∈� ; i = [1 2 ... Lsc] 

Each choice indi is a uniformly distributed random variable 
that indicates where, in the subregion S, is the ith line of Sstr

and, as consequence, maps X (Lsc x NX ) as in (7): 
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Since quality of the feed is a major unmeasured disturbance 
the set of variables z is represented by the ratio of the slope of 
the true boiling point curve of the actual feed related to the 
one at nominal operating condition. If feed stream may have 
three different compositions symmetrically disturbed:  

]05.1195.0[=r

indi ~ Unif(1, 3);  indi ∈�; i = [1 2 ... Lsc] 

z = r(ind)          (23) 

In order to allow a better understanding of the different 
effects observed in the results there will be considered two 
cases of study. In the more generic case A it is supposed that 
the set of variables z is represented by (23) and that the 
inference model is the actual one used in industrial practice. 
Case B will also take disturbances as in (23) into account but 
it is supposed that the inference model was perfectly modeled 
in the absence of disturbances. It is perfect in the sense that 
all the effects of the model input variables perfectly 
propagate to the output variable. In other words, at z=znominal, 
F3 = F3(z,c3) as in (6) and the inference is correct for any 
value of x. 

As it can be seen in figure 2, in both cases bias updating 
procedure yields an expected mean value of zero although 
values show less dispersion when no bias correction is used. 
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Figure 2 – Estimated probability density function of inferred 
weathering values for case A. 

 Estimated probability density function for case B (fig. 3) 
shows additional features. In this case it is clear that, with no 
update, the inference will be correct every time z=znominal
whatever the x values. The two triangular areas under the 
blue line around the central peak in figure 3 are originated 
when z= znominal±Δz. It should be noticed that the fact that 
those areas are not as thin as the central peak is due to the 
dependence of F3 (6) on x. When bias update is 
implemented, two more regions appear as well all regions 
become flatter. It is because bias expected values will be the 
result of the difference of all possible two random samples 
respectively chosen from the sample space of the non 
corrected inferred values and from the sample space of true 
values. These bias values will be summed to the inferred ones 
creating the oscillations of the red line at extreme inference 
errors observed in figure 3. 
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Figure 3 – Estimated probability density function of inferred 
weathering values for case B. 

  

6. CONCLUSIONS 

This work addressed the problem of continuous time 
monitoring in processes with differing sample rates for 
measured variables. Bias updating is a common adaptive 
procedure to periodically correct soft sensor models 
estimates. It was shown that this strategy is associated with 
long term zero mean error but at very high cost of 100% 
increase in variance of estimates. Our intention was to shown 
that a procedure to implement periodical parameter update 
should be problem-specific. It means to take into account 
statistical impact on estimates based on prior knowledge of 
probability density of disturbances as well error magnitude of 
soft sensor estimates. 
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