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Abstract: Every ten years or so, Shell has looked to refresh its Advanced Process Control (APC) 
technology. The last major technology upgrade occurred in 2003 when Shell along, with our APC alliance 
partner, Yokogawa, released SMOCPro (MPC) and RQEPro (quality estimation). In 2011, Shell and 
Yokogawa agreed to initiate the development of our next-generation APC technology. Brought to the 
market in 2015, the Platform for Advanced Control and Estimation (PACE) was built from the ground up, 
leveraging our long combined experience in APC. 

 

1. INTRODUCTION 

Shell1 has had a long history in gaining significant benefits 
by the use of advanced process control (Cott 2007, Cott 2008, 
Cott 2012). Advanced process control allows us to manage 
production, energy efficiency, product quality and waste 
minimization in a coordinated and consistent manner.   

SMOCPro, our current technology released to the market in 
2003, was a typical design of its time: a two-level linear 
controller with a static optimization layer to compute the 
targets for the lower level dynamic control problem. 

Our next generation technology, the Platform for Advanced 
Control and Estimation (PACE) represents a quantum leap 
that will simultaneously drive down the costs of developing 
and maintaining APC applications while providing new tools 
and capabilities to address even more challenging control 
problems and deliver more value to our customers. While 
PACE is still based on a two-level controller design, many of 
the assumptions used in SMOCPro have been further relaxed. 

In this paper, we will discuss the major advances made in 
various aspects of the technology, including how we 
formulate and solve the estimation and control problems and 
how we minimize the impact of maintenance activities on the 
running controller. Finally, we will discuss the challenges 
and opportunities for further work in this space. 
                                                
1 The companies in which Royal Dutch Shell plc directly and 
indirectly owns investments are separate entities. In this 
publication the expressions “Shell”, “Group” and “Shell 
Group” are sometimes used for convenience where references 
are made to Group companies in general. Likewise, the words 
“we”, “us” and “our” are also used to refer to Group 
companies in general or those who work for them. These 
expressions are also used where there is no purpose in 
identifying specific companies. 

2. ESTIMATION 

Traditionally, the estimation part of many control algorithms 
has taken a secondary role to the control law in the 
development of the algorithm.  PACE continues our tradition 
of focusing as much attention on the estimation problem as 
the control law. Our experience has shown that the better we 
can predict where the process is going, the better the overall 
control performance will be. Fundamentally, the estimation 
problem is one of using process feedback to manage the 
presence of various deterministic and stochastics disturbances 
that always presented during real operation (Muskie and 
Badgwell (2002), Pannocchia and Rawlings (2003), 
Rajameni et al (2009)).  These include: 

• Plant model mismatch & model uncertainty; 

• Unmodeled / unanticipated perturbations; 

• Sensor / measurement noise. 

PACE and its predecessor SMOCPro (Cott 2007) achieve 
better performance in the estimation space by: 

1. Allowing the use of additional measurements 
(called process output variables (POV’s)) in the 
estimation problem that do not necessarily 
participate in the control law but improve the 
performance of the estimation problem; 

2. Relaxing the typical assumption that the structure 
between manipulated variables (MV’s) and process 
out variables (POV’s) must be a dynamic matrix; 

3. Allowing the designer to match the prediction error 
update function for each process output variable to 
the behaviour of that process output variable.    

A control designer sitting down with the PACE software 
begins by building the estimator, which relates MV’s and 
DV’s (disturbance variables) to POV’s.  POV’s can also feed 
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other POV’s which provides more much flexibility in 
defining the relationship amongst variables, in particular, 
around how prediction errors are forecasted to other POV’s 
Only later in the design process does the control designer 
select POV’s to become controlled variables (CV’s) in the 
control law.  Model identification using POV’s is often 
simpler and more robust as the control designer is fitting a 
series of models between POV’s rather than a MV-to-CV 
relationship which may have many process operations 
between them. PACE convolutes the POV-to-POV models 
internally to arrive the equivalent control law.  

PACE further relaxes model structure assumptions by 
allowing the control designer to use a different model 
structure at the control layer (Figure 1).  While the default 
control layer shares the same model relationships, there are 
times when changing the model structure for control proposes 
can be very beneficial.   For example, there are often good 
reasons to segregate manipulated variables so that they only 
participate on a subset of controlled variables, even though 
they have strong impacts throughout the controller.  Keeping 
the full relationship in the estimation layer, while removing 
models at the control layer, can deliver the desired controller 
behaviour. 

 
Figure 1 - Control and Estimation Layers 

One key set of POV’s that SMOCPro and PACE leverage 
heavily in the estimation problem is the base layer controllers 
that they write to as manipulated variables. While it is 
possible to assume that the base layer controller will always 
drive the process output variable to the setpoint requested by 
PACE, it has been our experience that this assumption does 
not hold true very often and modelling the performance of the 
base layer controller is very important for the estimation 
problem. 

Properly modelling the behaviour of these base layer control 
loops to include the effect of the base layer control loops 
significantly quiets the control actions computed by a 
controller.  In one example, incorporating the full behaviour 
of a furnace outlet temperature in the estimation problem 
reduced the amount of control action on a crude column by 
about 50%.  This indicated that the original control design 
was over-controlling the column, taking action for errors seen 
in the controlled variables that were in fact already corrected 
for in the base layer control.  

While SMOCPro provided a straightforward way to model 
the relationship between the base layer controller setpoint and 
the actual process output variable under control, PACE 
extends this to also model the behaviour of the control valve 
which allows the control designer to much more precisely 
manage saturation conditions.  There are many times when 
the designer does not want the base layer control to saturate, 
but in a few cases saturation assures that the controller is 
making maximum use of the variables it has available. This 
also allows the control designer to better handle changes in 
controller modes.  For example, if PACE was manipulating a 
flow to control a level and later the flow was taken out of 
remote and returned to local, PACE will properly model this 
change in behaviour of the flow controller.  This was not 
possible with SMOCPro.  

Another innovation relates to soft sensor technology.  In our 
previous technology, the implementation of soft sensors (also 
often referred to as quality estimators) was done in a separate 
software package (RQEPro) and we found that this often 
caused us to repeat a great deal of information in both 
RQEPro and SMOCPro. Fundamentally the major difference 
between the two packages was only in the algorithm to do the 
prediction error updates.   In PACE, the control designer has 
the ability to select which error prediction update method to 
use: either the PACE standard method (used for 
measurements scanned at a frequency equal to or fast than the 
controller or an error projection update routine based on our 
soft sensor technology for infrequently sampled 
measurements.  This second update method allows the 
control designer to bring lab data and slow analyser feedback 
directly into the estimation layer, eliminating the need to 
bring a separate application  

Given the wider number of options available to the control 
designer during construction of the estimation layer, it is 
vitally important to provide powerful visualization tools to 
display to the designer the current model construction. PACE 
permits a variety of visualizations of the estimation layer (and 
control layer as well) including an extended dynamic matrix 
structure (Figure 2) that shows POV’s in both the rows and 
columns of the dynamic matrix. Convolution of the 
individual models into the final dynamic models is performed 
automatically by PACE. 

 
Figure 2 - Extended Dynamic Matrix Representation 
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PACE also provides a graphic model viewer (GMV) that 
shows the cause-effect structures amongst the MV’s, DV’s, 
POV’s and CV’s (Figure 3): 

 

 
Figure 3 - Graphic Model Views 

The advantage of the cause-effect graphic model view is that 
it shows the control designer which POV’s impact which 
CV’s and if particular CV’s are highly correlated with each 
other.   

With all of this focus on POV’s, a good rule of thumb we use 
is that a well-designed estimation layer has at least two 
POV’s for every CV.  Since at least one POV is directly tied 
to each CV and each MV has its current value included in the 
estimation model, this rule of thumb is relatively easy to 
achieve for refining and chemical processes by adding only a 
few more key POV’s: as an example, for distillation columns, 
these additional POV’s tend to be secondary tray 
temperatures and/or column loading indicators like delta 
pressure measurements. 

Finally, as the span of control strategies continues to increase, 
it is more and more likely that the estimation layer will have 
to deal with parts of the plant being taken out of service for 
short-term maintenance.  A good example is the shutdown of 
an ethylene cracker furnace for decoking. It is very important 
that the estimation layer properly handling this shutdown 
state.  To help with this, we have included an equipment out-
of-service concept that allows the control designer to take 
groups of CV’s, POV’s, MV’s and/or DV’s out of the 
estimation and control layers in a structured manner.  
 
   

3. CONTROL AND OPTIMIZATION 

While we have focused a great deal of innovation into the 
estimation layer of PACE, the control layer was also fully 
revised, starting with economic functions.  We took the 
opportunity to move from a traditional Quadratic Program 
solver technology and embraced a state-of-the-art solver 
technology that permits the use of general nonlinear functions 
for economic functions, not just linear or quadratic functions.  
This creates the opportunity to design and implement 
economic functions that align with the business drivers rather 
than relying on a local and simplified approximation.  

Furthermore, PACE permits multiple economic functions that 
can be optimized simultaneously. The control designer can 
prioritize economic functions against each other and versus 
CV constraints (Figure 4). These economic functions are 
optimized in the order of decreasing priorities until all 
degrees of freedom are exhausted. If specified as equal 
priority, the control engineer can weigh the economic 
functions against each other. 

 
Figure 4 - Economic Optimization in PACE 

Moving from the steady-state optimization space to the 
dynamic control problem, we have moved away from 
SMOCPro’s limited horizon formulation to an infinite 
horizon formulation in PACE.  To do this, we switched from 
having the system attracted to its steady state target using 
MV clamping in SMOCPro to having the system attracted to 
its steady state using penalties on CV deviations. This allows 
a longer horizon for the MV’s to plan moves. 

We discovered with SMOCPro that relying on the same set of 
tuning parameters for both the static optimization and the 
dynamic control problem caused challenges for the control 
designer to consistently get the desired behaviour, PACE 
splits the tuning for the static and dynamic control into 
different parameter sets, resulting in a much more 
straightforward way to tune the dynamic response. 

Another aspect of the dynamic control problem in SMOCPro 
that we wished to improve was the handling of unstable or 
ramp processes. Unstable or ramp behaviour in advanced 
process control design often come from the incorporation of 
level control of tanks and/or accumulators, but there are also 
several refining and chemical processes that exhibit unstable 
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behaviour (for example, temperature control in partial 
combustion catalytic crackers). SMOCPro exerted very tight 
control on ramp imbalances which often unnecessarily 
constrained the control problem. PACE allows a temporary 
relaxation of the ramp imbalance constraints when within 
limits. This is very beneficial when controlling large tanks 
with a slow dynamic cycle. (e.g. withdrawing inventory 
during the day and replenishing it  at night). This also helps 
to make tuning of levels and ramps more straightforward. 

Finally, we have investigated how to best dealt with the 
handshake between the steady state optimization problem and 
the dynamic control problem. This has remained a major 
challenge when integrating APC with nonlinear real-time 
optimization (RTO) systems, where the optimal operating 
point is computed as a set of coordinated RTO targets. 

Traditionally, the handshake between APC and RTO assumes 
that each RTO target is independent of each other and a 
simple weighting of errors between the RTO targets and the 
equivalent CV’s in the dynamic control problem is sufficient. 
In many cases, the formulation of the RTO system results in 
the economic function contours to be functions of several 
RTO targets.  Failing to incorporate these higher-order 
relationships into the computation of the targets for the 
dynamic control problem will result in the controller not fully 
extracting the full cumulative benefits available to it as 
discussed by Rawlings et al (2008) and Rawlings and Amrit 
(2009).    

For PACE, the Best Performance Value (BPV) concept 
bridges this gap. The BPV is defined as an optimized set of 
CV values that correspond to the highest economic function 
value but lie within the CV space limits (). The static target 
that the dynamic control problem uses is easily computed 
alongside the BPV. 

  
Figure 5 - Best Performance Value Concept 

The BPV concept therefore ensures that the relationship 
amongst the CV’s that generates the highest economic values 
are preserved upon the calculation of the static targets and the 
controller will be able to achieve a good portion of the 
cumulative benefits available. 

4. CONTROLLER MAINTENANCE 

While the previous two sections have focused on the 
algorithmic aspects of PACE, there are many equally 
importance software design aspects that significantly increase 
the productivity of the control designer in delivering and 
maintaining APC strategies.  

Changing a controller design while it is already active has 
traditionally been a challenging problem.  In the past, with 
restricted memory and CPU space, there was little more that 
could be done than to stop the old controller running, upload 
the new control design and then restart the new controller.  
This created a downtime in the controller operation and 
perhaps more subtly it also took a long period of time for the 
controller to rebuild its predictions from this restart point.  
Fundamentally, this created the opportunity for a significant 
period of poor performance whenever a controller was 
updated. 

In PACE, we allow both staged and live controllers (Figure 
6). Configurations can be archived, both within the design-
time and run-time environments.  In the run-time 
environment, controllers can also be staged which means they 
are running in estimation mode alongside the active 
controller or even pull historical data from the running 
controller to build predictions.  The predictions on the staged 
controller are therefore much closer to those of the active 
controller, so when the staged controller is promoted to being 
the active controller, the controller effectively does not go 
offline nor does the controller performance degrade as the 
predictions are in good shape. 

 
Figure 6 - Design and Run Time Staging 
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Another reason why APC strategies have traditionally gone 
offline is for the control designer to change or update a model 
between two variables in the controller. PACE permits a 
great deal of flexibility in changing the individual models in 
the control or estimation layer.  Both the transfer function 
type (first order, second order, ramp) and the transfer 
function parameter list (gain, delay, time constants) can be 
changed online without putting the controller in standby. 
While the control designer can define multiple elements for a 
single input/output pair, only one element can be active per 
SISO relationship. PACE allows the user to 
programmatically switch amongst these multiple elements to 
account for operation mode changes. 

5. CHALLENGES AND OPPORTUNITIES 

With the size of controllers ever increasing, it is getting more 
and more difficult for the control designer to confirm whether 
the controller is, in fact, performing as expected. 

At the simplest level, this type of question is often posed as: 
“Looking back to a moment in time, why did the controller 
do what it did?” This is a challenging question as it requires 
not only deep knowledge of the controller design and 
implementation, but also the history of the data presented to 
and processed through the controller. This moves the 
diagnosis of controller behaviour into the “big data” realm. 
Of course, this approach only works if the future behaviour is 
similar to that of the past. While this assumption often holds, 
there are many situations where a change of process 
behaviour due to a physical change in the process (damaged 
processing equipment) or operating goal (new product 
specification) makes fully relying on past data impossible. 

More generally, even if there may not be an event that 
initiates investigation, the control designer should be 
spending some time asking and answering the following 
questions: 

• Could the controller be generating more benefits 
than it currently is? 

• Are we making the best use of the full operating 
window? 

• What are the trade-offs to be made in order to grasp 
those opportunities? 

To answer these questions, it is clear that the economic 
landscape of the process operation must be known to a high 
degree of precision and that it must be overlaid onto the 
controller’s performance. It also indicates that some degree of 
experimentation needs to be included in order to search for 
new solutions that may not be represented in the current 
controller design. 

SUMMARY 

Getting the opportunity to write from the ground up a new 
advanced process control technology allowed Shell and 
Yokogawa to revisit many of the design decisions we made 
in our previous technology. What we found was that many of 

the design decisions were related to the fundamental 
constraints of software and computing technology of ten or 
more years ago.   

With access to today’s modern computers and software 
languages, we have been able to advance many of the areas 
within advanced process control technology to allow the 
delivery of lower-maintenance, higher-performing controllers 
within a shorter project timeline. 
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