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Abstract: A method based on Bayesian neural networks and genetic algorithm is proposed 
to control the fermentation process. The relationship between input and output variables is 
modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. 
A feedback loop based on genetic algorithm is used to change input variables so that the 
output variables are as close to the desired target as possible without the loss of confidence 
level on the prediction that the neural network gives. The proposed procedure is found to 
reduce the distance between the desired target and measured outputs significantly. 
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1. INTRODUCTION 

 
The control of engineering systems, such as 
bioprocesses, has been the subject of research for 
some time. A literature review on the subject can be 
found in Schurgel (2001). This paper reviews recent 
development of bioprocess engineering including 
monitoring of product formation processes. It also 
reviews advanced control of indirectly evaluated 
process variables by means of state space estimation 
using structured and hybrid models, expert systems 
and pattern recognition for process optimization. 
Control of engineering systems has been conducted 
in several areas, such as aerospace engineering, 
where it was applied to actively control pressure 
oscillations in combustion chambers (Blonbou, et. 
al., 2000).  Genetic algorithms and fuzzy logic have 
been successfully used to control load frequency in 
PI controllers (Chang, et. al., 1998). Plant growth has 
been optimally controlled using neural networks and 
genetic algorithms (Morimoto and Hashimoto, 1996) 
and fuzzy controller has been used for active 
management of queuing problem (Fengyuan, et. al., 
2002). 

 
The control procedure adopted in this paper consists 
of two components of a feedback control system. 
The first component is the forward component that 

takes the inputs and computes the outputs. In many 
complex problems, approximation methods, e.g. 
neural networks or fuzzy logic, are used to achieve 
this goal. The second component is the feedback loop 
that is only activated if the predicted output is not 
sufficiently close to the desired target. This is an 
optimisation problem and any number of 
optimisation tools such as gradient-descent methods 
can be used (Pallaschke, 1997). However, in many 
practical problems, which are generally complex, it is 
sometimes impossible to calculate the gradients 
required when gradient based optimisation methods 
are used. Furthermore, the gradient based methods 
are more susceptible to local optimum solutions 
rather than global optimum solutions. As a result of 
these limitations, over the past years evolutionary 
techniques such as genetic algorithms have become 
popular. This is due to the fact that they do not 
require gradients and are able to identify globally 
optimum solutions (Michalewicz and Dasgupta, 
1997). 
 
Thus far most control procedures that use neural 
networks use networks that are trained by the 
maximum-likelihood method (Bishop, 1995). 
Maximum-likelihood method for training neural 
networks is conducted by minimising the distance 
between the network training target and the neural 



     

network prediction. However, this procedure is only 
effective if the networks are trained in the 
conventional approach of training, validation and 
testing, which is not ideal for on-line control 
problems. Furthermore, the maximum-likelihood 
method does not give confidence levels on the 
predictions they give. As a result, the optimised input 
parameters do not necessarily fall within the learned 
input space and consequently, neural networks are 
not confident of the outputs they give. In this paper, 
an alternative neural network method, i.e. Bayesian 
neural networks are used to predict the output given 
the input data and be implemented in the context of 
control systems. The output predicted by neural 
networks also has confidence levels due to the 
Bayesian formulation. If the output is not sufficiently 
close to the target output, genetic algorithm is 
activated to sample the combination of input 
parameters that ensures that the predicted output is as 
close to the desired target output as possible. This is 
done such that the resulting predicted outputs retain 
high confidence levels.  
 
The framework, proposed in this paper, is tested to 
optimally control the fermentation problem, which is 
a highly complex process. The reason why 
fermentation is chosen is because of its practical 
importance in areas such as pharmaceutical and food 
industries, which are vital for human life.  
 
This paper makes the following contributions to the 
scientific literature: (1) contribute to control 
literature by tackling the control of highly complex 
scenario with multiple variables that involve 
biological organisms; (2) apply Bayesian statistics to 
ensure that the control algorithm is confident of the 
optimal solution it gives; (3) and apply genetic 
algorithm and Bayesian neural networks for the 
control of highly complex systems. 
 

2. CONTROL FRAMEWORK 
 
The control framework that is implemented in this 
paper is shown in Figure 1. As mentioned in the 
introduction, the first component of the framework is 
a feed-forward neural network, which takes input 
vector x given network weights w and predict output 
vector y as follows: 

( )w,xFy =  
The network weights in equation 1 are obtained 
through the learning process, which is explained in 
the next section. It must be borne in mind that the 
network weights, in this paper, form a probability 
distribution because we are employing Bayesian 
statistics to train the networks. As a result, the output 
vector also has a probability distribution from which 
confidence levels can be drawn. 
 
The second component of the control loop, shown in 
Figure 1, is genetic algorithm optimiser. Its function 
is to identify input parameters that minimise the 
distance between predicted and desired target output 
vectors while ensuring that confidence levels on the 
prediction remain high. The objective function that is 
used to achieve this goal is: 

( ) )CL1(tyerror 2

d −+−=�  

In equation 2, y is the neural network output vector, 
td is the desired target vector and CL is the 
confidence level and it ranges linearly from 0 for no 
confidence to 1 for full confidence. The CL is 
calculated from the average standard deviations of all 
the elements of the normalised output vector. The 
average standard deviation of 0 gives CL of 1 while 
an infinitely high standard deviation gives the CL of 
a 0. The design variables, in equation 2, are the input 
parameters to the neural networks. The second term, 
in equation 2, ensures that the identified input 
parameters that minimises the error fall within the 
subset of the information that has been learned 
before. This is crucial because neural networks only 
operate within the framework of the information they 
have learned before. The exclusion of CL tends to 
give the input parameters that when forward-
propagated into the neural networks, they give 
inaccurate results. The details on solving equation 2 
using genetic algorithm are explained later in the 
paper. 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Feedback control loop that uses Bayesian 

neural networks and genetic algorithm 
 

3. NEURAL NETWORKS 
 
As explained in the previous section, the first 
component of the control mechanism adopted in this 
paper is neural networks. Neural networks are tools 
that make probabilistic assumptions about data. 
Learning algorithms are methods for finding 
parameter values that look probable in the light of the 
data. In this paper, neural network learning is used to 
approximate the functional mapping between the 
input vector x and output vector y. In this paper, the 
multi-layer-perceptron (MLP), with a hyperbolic 
tangent basis function in the hidden units and linear 
basis functions in the output units, is used (Bishop, 
1995). A schematic illustration of the MLP is shown 
in Figure 2 and the relationship between the kth 
output y and x may be may be written as follows 
(Bishop, 1995): 
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Here, M is the number of hidden units, d is the 
number of input units, )1(
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input i to hidden unit j while )1(
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for the hidden unit j.  
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Training the network essentially means estimating 
the weight vector w that ensures that the output 
vector y is as close to the training target vector as 
possible. In this paper, Bayesian technique is applied 
to estimate the weight vector and this method is able 
to handle the lack of adequate amount of training 
data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Feed-forward network having two layers of 

adaptive weights. 
 
The problem of identifying the weights (wi) is posed 
in Bayesian form as follows (Neal, 1993): 

)D(P
)w(P)w|D(P

)D|w(P =   

where P(w) is the probability distribution function of 
the weight-space in the absence of any data, also 
known as the prior probability distribution function, 
and D≡ (y1,…,yN) is a matrix containing the output 
data. The quantity P(w|D) is the posterior probability 
distribution after the data have been seen and P(D|w) 
is the likelihood probability distribution function 
while P(D) is the normalisation factor. Following the 
rules of probability theory, the distribution of output 
vector y may be written in the following form: 

�= dw)D|w(p)w|y(p)D|y(p  

For special cases, the distribution, in equation 5, may 
be calculated directly, however, for many practical 
problems it is estimated using Monte Carlo methods 
(Neal, 1993; Takaishi, 2002). The integral in 
equation 5 may, thus, be approximated as follows 
(Neal, 1993): 
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y  is the estimated output, F is the neural 
network model that gives the output whenever the 
input is given, Q is the number of initial states that 
are discarded in the hope of reaching a stationary 
distribution represented by equation 5 and L is the 
number of retained samples. In this paper, the hybrid 
Monte Carlo method, which has been used quite 
extensively to solve complex engineering problems 
(Öcten, 2002), is used to estimate equation 5 through 
equation 6. The details of this technique, which are 
fairly abstract, are beyond the scope of this paper and 
can be obtained in (Neal, 1993). This technique is a 
form of a Markov chain with transition between 

states achieved by alternating the ‘stochastic’ and 
‘dynamic moves’. The ‘stochastic’ moves allow the 
algorithm to explore states with different total 
energy. The ‘dynamics’ moves are achieved by using 
Hamiltonian dynamics (Neal, 1993) and allowing the 
algorithm to explore states with the total energy 
approximately constant. This is achieved by 
following these steps: (1) Choose the step size (∆w) 
and the number of steps (L) in the trajectory; (2) 
From the initial weight vector (winitial), take¸ L steps 
each of size ∆w, in the weight space in the direction 
that result with higher posterior probability leading to 
vector wcurrent [this direction is obtained by 
determining the gradient of p(w|D)]; and (3) If the 
posterior probability of the current sample is higher 
than from the previous sample, then accept wcurrent. 
Otherwise, select a random number ξ of uniform 

distribution in the range [0, 1]. If ξ�
)D|w(p
)D|w(p

old

current  

then wcurrent is accepted, otherwise it is rejected. This 
process is called Metropolis et. al. algorithm (1953). 
 

4. GENETIC ALGORITHM 
 
In Figure 1 it is indicated that the other component of 
the control process proposed in this paper is genetic 
algorithm. Genetic algorithms were inspired by 
Darwin’s theory of natural evolution. In this paper, 
this natural optimisation method is used to optimise 
the cost function shown in equation 2. The genetic 
algorithm implemented in this paper uses a 
population of binary-string chromosomes (Holland, 
1975). Each of these strings is the discretised 
representation of a point in the search space and, 
therefore, has a fitness function given by the 
objective function. On generating a new population, 
three operators are performed: (1) crossover; (2) 
mutation; (3) and reproduction. 
 
The crossover operator mixes genetic information in 
the population by cutting pairs of chromosomes at 
random points along their length and exchanging 
over the cut sections. This has a potential of joining 
successful operators together. Simple crossover 
technique (Goldberg, 1989) is used in this paper. For 
simple crossover, one crossover point is selected, 
binary string from beginning of chromosome to the 
crossover point is copied from one parent, and the 
rest is copied from the second parent. For example, 
when 11001011 undergoes simple crossover with 
11011111 it becomes 11001111. 
 
The mutation operator picks a binary digit of the 
chromosomes at random and inverts it. This has a 
potential of introducing to the population new 
information. In this paper, binary mutation is used 
(Goldberg, 1989). When binary mutation is used, a 
number written in binary form is chosen, and its 
value is inverted. For an example: 11001011 may 
become 11000011. 
 
Reproduction takes successful chromosomes and 
reproduces them in accordance to their fitness 
functions. In this paper roulette reproduction method 
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is used (Goldberg, 1989). Roulette method can be 
viewed as allocating pie-shaped slices on a roulette 
wheel to population members. Each slice is 
proportional to the member's fitness. Selection of a 
population member to be a parent can then be 
regarded as a spin of the wheel. The winning 
population member is the one in whose slice the 
roulette spinner ends up. Even though this selection 
method is random, each parent's chance of being 
selected is directly proportional to its fitness. The 
least fit members are therefore gradually driven out 
of the population. 
 

5. CASE STUDY 
 
To validate the procedure proposed in this paper, the 
proposed method is tested to control fermentation. 
Fermentation is a process by which sugar is 
transformed into alcohol using yeast as a catalyst. 
There are many ways in which fermentation is 
controlled and this includes pursuing the chemical 
route (Johansson and Hahn-Härgedal, 2002). This 
can be done by understanding the chemistry and 
adding chemical additives to control fermentation. 
The disadvantage of this procedure is that nowadays 
there are health pressure groups that have made it 
their missions for there not to be any added 
chemicals to goods that are consumed by human 
beings. The control of the fermentation process has 
been studied by O’Connor et. al. (2002), who used 
fuzzy-logic to control the fermentation process, with 
an objective being to find interrelationships between 
input and output variables. Their work was limited in 
the following ways: (1) the input parameters were 
not as comprehensive because fuzzy logic cannot 
handle many input variables; (2) fuzzy logic is more 
of an approximation method that neural networks 
and therefore tends to be less accurate; (3) fuzzy 
control scheme that was implemented is not able to 
optimally control a complex process, such as 
fermentation; (4) the control scheme proposed was 
not practically implemented. The present study 
addresses all these four issues mentioned above. 
 
The device constructed, in this paper, to control the 
fermentation process is called the Fermentation 
Management System (FMS) and is illustrated in 
Figure 3.  
 

 
Fig. 3 Illustration of the fermentation management 

system implemented to control fermentation. 

 
The FMS has the following components:  
1. Brand Chooser: Here there are two beer brands to 
choose from. 
2. Input Parameters: These are grouped into various 

types. The first group is the fermentation vessel and 
here the fermentation process occurs with yeast as a 
catalyst. The second group is the characteristics of 
the malt (which is obtained from barley through a 
process called malting, which is beyond the scope 
of this paper) from which fermentable sugars are 
obtained. Parameters in this group cannot be 
changed or modified and therefore do not form part 
of parameters that can be controlled. The third 
group is the mashtun where malt is heated through 
various temperatures for defined durations. There 
are some parameters in this group that can be 
changed for control purposes and these are stands 
temperatures and pressures. The fourth group is the 
mills where malt is meshed to prepare it for 
fermentation. In this paper, none of the parameters 
from the mills are conveniently controllable. The 
fifth group is the wort, which has the wort-
dissolved-oxygen that can be controlled. Wort is 
filtered liquid sugar. The sixth group is the yeast 
which is essential for making of alcohol and is a 
single-cellular living organism with certain 
measurable properties. Input parameters that are 
controllable are two stands temperatures and their 
respective durations as well as the wort dissolved 
oxygen. These controllable parameters are 
highlighted in white colour in Figure 3.  

3. Predicted Output Parameters: These are quality 
parameters that can be linked to the taste of the 
beer. These are beer colour, pH, alcohol; residual 
extract (RE), diacetyl and limit extract (LE). 

4. Graphical display of predicted outputs: This 
makes it easy for the user to visually inspect the 
predicted output graphically as seen in Figure 3 
with the y-axis named Prediction. 

5. Output numerical display: This supports (4) and is 
indicated in Figure 3 (see Output Prediction).   

6. Difference between predicted outputs and targets: 
This functionality allows the user to have some 
idea on how far the predicted output is from the 
desired target. The graph in the FMS can be used to 
manually control the fermentation process through 
trial-and-error. This is useful because brew-masters 
are reluctant to completely surrender the decision-
making process to a computer program such as the 
FMS.   

7. Optimal controllable inputs: These inputs, shown 
in white in Figure 3, can be controlled and are the 
mashtun 1 and 2 stands temperatures and durations 
as well as the amount of oxygen in the wort. 

8. Confidence levels (CL): This indicates the 
confidence the network has on a solution and 
allows a user to take or reject a recommendation of 
the FMS. Practical implementation of the FMS 
shows the CL of 80% as a cut-off point.  

9. Real measured outputs: Measured outputs which 
are used to expand the training database. 

 
The FMS infrastructure has the following pushdown 
buttons: 



     

1. Train Networks: This activates a program that 
reads the database and trains the network and saves 
the characteristics of the trained networks. 

2. Prediction: This takes the input data as well as 
trained networks’ characteristics and predict the 
end of fermentation parameters. 

3. Add Data: This takes measured output parameters 
and the corresponding input parameters and add 
them to the database. 

4. Optimiser: This invokes the genetic optimiser to 
identify mash temperatures and the amount of 
dissolved oxygen that give predicted output that is 
as close to the desired target as possible 

5. Close: This functionality closes the FMS 
 
In many control problems the control procedure, 
such as the one proposed by Blonbou et. al. (2000) to 
control combustion, time is critical and a control 
algorithm has to be invoked within a fraction of a 
second. For these types of applications Bayesian 
networks are not suitable, due to the fact that they are 
computationally intensive relative to other types of 
neural networks. As a result, the advantage of 
confidence levels that, is offered by Bayesian 
networks is not exploited. However, for the present 
application, of optimal control of fermentation, time 
is not as critical because the fermentation process is a 
slow process that takes 10 days to complete. The 
window period in which the control process can be 
activated is one day. 
 
In this paper, the architecture of the neural network 
constructed has 29 input parameters, 19 hidden units 
and six output units. The details of the input and 
output units are described at the beginning of this 
paper (see equation 3) and the activation units in the 
hidden layer is a hyperbolic tangent function while in 
the output layer is a linear function. The number of 
retained samples that form the posterior probability 
indicated in equation 4 is 500, while the number of 
discarded samples is 100. Some samples are 
discarded, as a matter of good practice, because they 
may not necessarily reflect the true posterior 
probability (see equation 4) due to the fact that the 
algorithm may not have reached sampling at the 
regions of the desired distribution. Bayesian neural 
network is used to estimate the predicted output, 
through equation 6, and the confidence level (CL) is 
obtained from the standard deviation of the 
distribution of the output (see equation 5). The 
standard deviation is normalised so that when 
standard deviation is 0 then the confidence level is 1. 
On training the neural networks 600 samples were 
used. 
 
The genetic algorithm is constructed using the 
objective function in equation 2. The design 
variables are the five controllable parameters which 
are stands 1 and 2’s temperatures and durations in 
the mashtun as well as the amount of dissolved 
oxygen in the wort.  The size of the population of 
possible input parameters when implementing 
genetic algorithm is 40. The input parameters to be 
optimised are transformed from floating point to 16-
bit format using Gray coding (Michalewicz and 

Dasgupta, 1997). The chromosomes (individuals in 
the population) represented by binary numbers are 
allowed to interact by using simple crossover 
procedure as mentioned above. The probability of 
crossover occurring is set to 0.6. This value was 
determined by trial and error. Each chromosome 
mutates at a probability of 0.0333. Again this value 
was obtained through trial and error. The 
chromosomes are transformed back to floating-point 
parameters. The objective function, given by 
equations 2, is then used to evaluate the fitness of 
each population member. The population members 
that are relatively fit are allowed to reproduce and the 
weak members are gradually eliminated using 
roulette wheel (Holland, 1975; Goldberg, 1989) 
procedure. When the fitness of the population has 
converged then the procedure is terminated. 
Otherwise, the process of crossover, mutation and 
reproduction is repeated. It was observed that 
convergence was generally achieved after 20 genetic 
algorithm generations. 
 
The computational time taken to train the neural 
network on a Pentium 3 with 200MHz of RAM was 
5 computer processing unit (CPU) minutes, while the 
time it took to determine the optimum input 
parameters using genetic optimiser was 6 CPU 
minutes. However, the time taken to predict the 
output was 3 CPU seconds while the time taken to 
add an additional sample to the database was 0.5 
CPU second. 
 

6. DISCUSSION 

The Bayesian neural network prediction is shown in 
Figure 4. This is an average prediction as obtained by 
using equation 6. Figure 5 shows results of the 
prediction versus actual that was taken to asses the 
accuracy of the neural networks. These figures show 
that indeed Bayesian neural networks offer accurate 
prediction of the end of fermentation parameters. 
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Fig. 4. Results of the output of the neural networks        

Key: RE: residual extract; LE: limit extract 
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Fig. 5. A snapshot of 29 samples showing the output 

of the neural networks 
 



     

The sample distribution of the output corresponding 
to colour is shown in Figure 6. From this figure the 
average output calculated through equation 6, is 0.35. 
From this figure several characteristics of the output 
may be derived including the standard deviation. It is 
from this standard deviation that the confidence level 
(CL) (see equation 2) is derived. 
 
The sample graph showing the errors between the 
prediction and the target and what was actually 
achieved through the implementation of genetic 
algorithm optimiser and the target is in Figure 7. The 
error shown is the sum-of-square errors of the 
normalised output and target.  
 
The output are normalised between 0 and 1 and the 
standard deviation that is used to calculate CL is 
obtained from the normalised output. Each output 
gives its own standard deviation and the CL is 
calculated from the average standard deviations of all 
the members of the output vector. The mean square 
error (MSE) before the implementation of the 
optimisation method is 0.71 while the achieved MSE 
after optimisation is 0.41 (see Figure 7). The results 
from Figure 7 show that the proposed control 
framework is robust and improves the end of 
fermentation results. 
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Fig. 6. Distribution of the output corresponding to 

colour level. 
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Fig. 7. A graph showing the error of the prediction 

from the initial inputs and the error achieved 
when the optimal inputs have been determined 
from the optimisation process 

 
7. CONCLUSION 

 
In this paper a control procedure that uses Bayesian 
neural networks and genetic algorithm is proposed to 
solve complex problems. The Bayesian networks are 
trained using the hybrid Monte Carlo method. The 
objective function used in the genetic algorithm 
optimiser minimises the error and maximises the 
confidence levels of the prediction. When the 
proposed procedure is implemented to control the 
fermentation process, it is observed that the 
procedure is able to give better results than was 

predicted without the use of genetic algorithm 
optimiser. 
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