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Abstract

A considerable amount of interest has been showresgarchers in the control of
pneumatic drives over the past decade, for two measons, firstly, the response is
very slow and the inability to attain set pointdigh due to hystiresis and secondly,
the dynamic model of the system is highly non-lmeshich greatly complicates

controller design and development. To address tipgeblems, two streams of

research efforts have evolved; (i) using converionethods to develop a modelling
and control strategy, (ii) adopting a strategy thags not require mathematical model
of the system.

This paper presents an investigation into the niogehnd control of an air motor

incorporating a pneumatic equivalent of the electi-bridge. The pneumatic H-

bridge has been devised for speed and directiotraiarf the motor. The system is

divided into three regions called low speed, medispeed and high speed. The
system is highly nonlinear in the low speed regibtmear parametric models

characterising the two linearised operating regignedium and high speed) of the
motor are developed using parametric estimationnigcies and local controllers are

developed using a pole-assignment design. A newdemand controller are



developed for the low speed region. A gain schedulstrategy is devised for

controlling the system in the three regions.

1. Introduction

Industrial processes, is in general, require objecbe moved, manipulated or
subjected to some force. The use of electricalpgent, such as DC motors, or
mechanical equipment via devices driven by air gomatics) or liquids (hydraulics)
normally achieves these tasks.

Air motors are compact, lightweight sources of sthagbration-less power. They
start and stop almost instantly, and are unaffelsyedontinuous stalling or overload,
and thus are suitable for intermittent operatiom.motors are relatively cheap, easy
to maintain, and have the versatility of variabfgeed, high starting torque, are
intrinsically safe in hazardous areas, and will rape in exceptionally bad
environments 3, 7, 10 & 15] Some of the advantages of air motors over etectri
motors include the following3]:

. Since air motors do not require electric powerythan be used in

volatile atmospheres.

. Air motors generally have high power density, senaller air motor
can deliver the same power as its electrical copate

. Unlike electric motors, many air motors can opewitbout the need
for auxiliary speed reducers.

. Overloads that exceed stall torque generally cawsénarm to air
motors. With the electric motor, overloads can fripcuit breakers, so an
operator must reset them before restarting thepeagnt.

. In contrast to electric motors, which utilise expi@e and complicated
speed controls, speed of an air motor can be regukarough simple flow-

control valves.

The motor torque can vary simply by regulatingitiput pressure.



. Air motors do not need magnetic starters, overlpamdection, or the
host of other support components required by eteatotors, and
. Air motors generate much less heat than electriiorao
Section 2 provides a brief description of the expental set up utilised in this
study. Section 3 briefly describes the modellingrapch. Section 4 discusses the
implementation of the control strategy and presemfserimental assessment of the

performance of the control strategy. The papeoixiuded in section 5.

2. System set up

The control system for the air motor is shown scigally in Figure 2.1. The

computer (PC) with the auxiliary hardware is usedsdource out and read all plant

devices. All electrical devices are externally poade
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Coding the control algorithm is straightforward. wyer, it is always advisable to
consider factors such as realisation, actuatorimeslities and computational delay to

minimise controller sensitiveness to errors.



3. Modelling approach

A black box identification approach was adoptedrfmdelling the system. This
involved several tests using data obtained fronpeed of 0 to 380 rev/min,
termed the un-identified speed region using newedlhorks. There are number of
nonlinear models that are potentially suited ts firoblem. In this investigation, a
nonlinear autoregressive model with exogenous s\MARX] [8], which
provides a concise representation of a wide cldsson-linear systems, is
employed. The NARX models are also referred tdaliterature by various other

names such as one-step-ahead predictor or as-paradkel model.
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Figure .1 Meural network and simulink schematic of air motar contral system

Many control system outputs of the actuator caruragd. This is because the
dynamics of the real actuator are limited, for amaotor valve will saturate when it
is fully opened or closed. The solution to thislpeon is the integrator windup, circuit
which turns off the integral action when the aoctuagaturates. The Pl controller
method is easier to implement as it does not recaiseparate nonlinearity but uses
the saturation itself. The effect of the anti-wipds to reduce the overshoot and the
control effect on the feedback. It's omission magd to distortion in response in
practical systems.



3.1 Neuro PI controller of the air motor

The air motor system has been identified and meddliom real input/ output data
using neural networks. The system output modelfaasd to fall within+0.05. This

means that the system’s nonlinear Pl controllertrhadimited within this range. The
anit-wndup PI controller is implemented using stnddransfer function for the plant.

6(s)=1

and a PI controller would be

D =k +k_':2+ﬂ
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The simulink presentation of the system is showiigure 3.1 and system’s output
and control effect in figures 3.2 and 3.3 respdigtfu
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The main features of NARX identification with neursetworks are symbolically

indicated in Figure 3.4.
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Figure 3.4 NARX model identification with neuraltm@rks

The mathematical non-linear model is of the form:
y(t) = fiylt=2),--ylt -, Jut -2)---ult - n, )} + elt) (3.1)

where y(t) is the outputu(t) is the input and(t) accounts for the uncertainties such

as possible noise, unmodelled dynamics agd n,are the maximum lags in the

output and input respectively. Thaét) term is assumed to be a zero mean white noise
sequence andf(+) is some vector valued non-linear function wft) and u(t)

respectively.
If the model is good enough to identify the systeithout incorporating the noise
term or considering the noise as an additive at dogut, the model can be

represented as a NARX forf® & 17]. The system’s noise terrre(()) can be



replaced by the prediction error or residu‘eﬂll) term and equation (1) can then be
re-written as:

y(t) = Hylt -1 ylt - n, hult -1)--ult-n, )} +eft) (3.2)

where the residual is defined as:

£(t) = y(t) - $() (3.3)

J(t) is the model-predicted output.

4. Implementation

Other models to identify the linear operating regal the system were obtained
with speed ranging from 385 to 680. These speeds dieided into: 385 to 543,

medium speed and 543 to 680 rev/min, high speeeed®p below 385 are
regarded as low speed region and are identifiechgusieural networks.

Accordingly, the auto-regressive moving average hwigxogenous input

(ARMAX) type model was used to characterise theiomadspeed and high speed

and operating regions of the system. This is gag&n

A Yy(t) = 2Bz ™)u(t) + Cz™)q(t) (4.1)
where

A@zh)=1+az +..+a, z"™
B(z") =h,+bhz +..+b, ™"

Cizh)=1l+cz'+.+a,z"™

z™* represents the system delay, ar{t), y(t) and ¢(t) represent the system input,
output and zero-mean white noise signals.
To estimate parameters of the model in equation &)east squares (LS)

algorithm is utilised16]. A pseudo-random binary sequence (PRBS) inputasign



used to excite the system and 1000 input/outpué getints are collected for
estimation of the model parameters. To ensure that model is an adequate
representation of the characteristics of the systeis validated through a number of

tests. These include:

» Significance of parameterén estimated parameter is significant if it iggter in
magnitude than its corresponding standard deviation

o Correlation tests For a model to be acceptable, the auto-correlatid the
residuals is required to be white. Moreover, thesstcorrelation between the
input sequence and a white noise sequence shoudrbeThe approximate 95%
confidence interval at1.96/N, where N represents the number of data points,

can be used to test this.

Estimation and test seDivide the data into estimation set and testwhere the

model is estimated with a set of data and theedester a different set of data.

The above five tests as defined by equations (462-ghould be satisfied if thé:)’s

and y(+)’s are used as network input nodes.

0. (1) = Eleft-1)lt)] = 3(1) (4.2)
0. (0)=Elut-Te]=0 (4.3)
0.0 =gt -1)-u20ke)]=0 ™ (4.4)
00 (0= Eut-0)-u?@k()]=0 ™ (4.5)
0o (1) = Elefelt -1~ -1-1)] =0 20 (4.6)



where ¢, (1) indicates the cross-correlation function betweef)) and et),
eu(t) =e(t +2)u(t +1), and a(t) is an impulse function.

The first two tests were adequate to test the mudkdlity in the case of linear
modelling but not sufficient to validate nonlineaondels. As a result of this, higher
order correlation tests are also included since $hudy is about a non-linear model.

The above five tests as defined by equations (62should be satisfied if thef+)’s

and y(s)’s are used as network input nodes.
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(c) Norm. x-corr. of input square & residuals
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(e) Norm. x-corr. of input & input resid.
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5. Conclusion
An investigation into real-time modelling and cantof a radial piston type air motor

has been presented. The air motor has been chi#gadtby local models
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corresponding to the low-speed, medium speed ajiddpeed operating regions.
Linear parametric models of the system have be&iredal and validated using the
least square parameter estimation algorithm. Newaorks have been used to
model the low speed section of the system.

A gain scheduling control strategy has been adoptedthe system. Local
controllers for the medium speed and high-speedatipg regions of the system have
been designed using a pole-assignment design agprohae set point and command
tracking ability of the local controllers have beewaluated and verified within
simulation studies as well as experimentally. & baen shown that each controller
performs to a satisfactory level. Furthermore, shatching ability of the scheduler
has been demonstrated and it has been shown thackieduler selects the correct
local controller for an operating region and smao#msition between the three local
controllers is achieved.

It has been demonstrated that speed regulationeo&it motor can be achieved
with the pneumatic H-bridge in real-time. It hasebenoted that the motor
characteristics incorporate hysteresis at the loged region. Accordingly, the
performance of the devised linear control methothatlower set points in the low-
speed region has not been as good as for mediurhighér speeds. Future research,

using adaptive neuro-fuzzy control will investig#tes aspect.
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