
THE UNIT OPERATIONS TOOLBOX: A
DYNAMIC SIMULATION PACKAGE IN

SIMULINK

R. Delport ∗ P.L. de Vaal ∗

∗ University of Pretoria, Department of Chemical
Engineering

Abstract: The Unit Operations Toolbox is a dynamic simulation package that
is being developed in Matlab/Simulink by members of the Process Modelling
and Control group of the Department of Chemical Engineering of the University
of Pretoria. The simulation package consists of a collection of models of unit
operations such as reactors and distillation columns, as well as a framework which
allows these models to be combined to form a process simulation. The aim of the
project is to create an educational tool which will increase students’ understanding
of the behaviour of chemical processes as well as the modelling of such systems.

Keywords: dynamic simulation, Matlab, Simulink, unit operations

1. INTRODUCTION

Matlab/Simulink is a well-established develop-
ment environment in the area of Process Mod-
elling and Control. The Simulink environment of-
fers an ideal facility for the development of an
icon-based dynamic simulator.

Ease of use, readily-available development in-
frastructure and the ability to link to other
Matlab/Simulink-based educational software were
some of the reasons for investing time in the de-
velopment of a Unit Operations Toolbox (UOT),
a dynamic simulation package for chemical pro-
cesses. The package is being developed in the Pro-
cess Modelling and Control Group of the Depart-
ment of Chemical Engineering at the University of
Pretoria (de Vaal & Greef, 1998). There are two
main types of simulators (Marquart, 1996).

• block- oriented (modular) and
• equation oriented.

In block oriented approaches, the process is rep-
resented by a block diagram. The blocks are lined
by connections representing the flow of material

and energy between the blocks (Laganier, 1996).
The user constructs a process by selecting blocks
from a library and provides the model parameters,
while in equation-oriented approaches, a system
of equations including the differential equations
based on the continuity equations and other re-
lationships are used to formulate a mathematical
model of a process.

In the development of a dynamic simulation pack-
age, a trade-off has to be made between the ca-
pabilities, cost and user-friendliness of the pack-
age (Laganier, 1996). Commercial dynamic sim-
ulation packages allow accurate simulations and
offer many features. However, these packages are
expensive and the creation of a simulation may be
time consuming.

The UOT is developed as an educational tool.
The aim is to increase students’ understanding
of the dynamics of chemical processes as well as
the modelling of these dynamics. To be effective
as an educational tool, simulations should be
sufficiently accurate to give qualitatively accurate
process responses, but the required accuracy is

less than expected of commercial packages. The
user should be able to create a process simulation
quickly and easily. The results of the simulation
should also be easily accessible.

Another advantage of the Unit Operations Tool-
box is that the user may view and possibly modify
any part of the modelling code. It is also possible
to create models of unique units such as process
laboratory equipment and incorporate these mod-
els in the toolbox.

The Simulink environment allows developers to
focus on the modelling of the process and leave
the numerical details to Simulink. The evironment
also offer many other advantages such as easy-to-
create user interfaces.

2. SIMULATION STRUCTURE

In the Unit Operations Toolbox, a unit such as a
reactor or a distillation column is represented by
a model of the process in the form of a Simulink
block. The Toolbox is a collection of such models,
as well as a framework which allows these models
to be combined to form a process simulation. Re-
cent development focused on the creation and im-
plementation of a flexible object oriented frame-
work within which further development should
take place.

An important aspect of the Toolbox is the stan-
dards for communication between the blocks. The
development of the Unit Operations Toolbox is
a project undertaken by many developers over a
time span of several years. It is important to create
clear standards to which blocks must conform to
be able to be used in a simulation with blocks
created by other developers.

In an actual process, the only contact a process
unit has with the rest of the process in through
the streams entering and leaving the unit. The
stream is described by the component flowrates,
temperature, pressure and phase of the streams.
Modular simulation packages uses a similar ap-
proach (Toebermann et al., 2000). The unit oper-
ations are represented by Simulink blocks and the
lines connecting the equipment are represented by
the vectors passed between the blocks. A block
reads data from its input streams and writes to
its output streams, which are represented by vec-
tors in this case. These vectors contain all the
information required to represent a stream. All
the information a block receives about the rest of
the process is contained in this “stream” vector.

It is also important that changes may be made
to the communication structure without affecting
existing blocks. If the stream vector is used in
block calculations, changes in the vector format

would mean that all the existing blocks would
have to be edited to reflect these changes. For this
reason, structures were used in block calculations.

Structures can be used to group related infor-
mation. The variables are grouped under de-
scriptive headings called fields. Both strings and
numerical values may be stored in a struc-
ture’s fields. Figure 1 shows the format of the
stream structure. For example, the command
“Stream.State.Pressure” will give the numerical
value of the pressure of the stream, while the
command “Stream.Components.Name” will re-
turn strings containing the names of the com-
ponents in the stream. One of the major advan-
tages of structures is that fields may be added or
removed without affecting calculations involving
other fields. The use of structures also makes code
easier to read and debug.

Stream

State

Components

Pressure

Temperature

Phase

Name

Flowrate

Fig. 1. The format of the stream structure

Ideally, passing of structures between blocks
should be possible. Unfortunately, Simulink does
not allow structures to be passed between blocks.
For this reason, the stream vector should be con-
verted to a structure before it is used for calcu-
lations. The block’s calculations should result in
a structure containing all the stream information
(temperature, pressure, phase, composition and
flowrate). This structure can then be converted
to a vector. The communication structure is illus-
trated in figure 2. It is possible that fields may
be added to the structure at a later stage. For
example, if solid streams are handled, additional
information such as particle size will be required.
If such aditions are made, the two functions which
handle the conversion between structures and vec-
tors are the only functions that will require mod-
ification.

Stuctures

C
o
n
v
e
r
t

C
o
n
v
e
r
t

Stream
Vector

Stream
Vector

Block
calculations

Fig. 2. Communication between blocks

The composition and flowrate of a stream are
represented by the mass flows of all the compo-

nents present in the simulation. If a component is
present in the simulation, but not in a particular
stream, the mass flow rate of the component in
that stream is zero. This approach gives stream
vectors of the same dimensions throughout the
simulation. This simplifies calculations and pre-
vents errors due to vectors of different dimensions.

It is also possible to allocate entries in the stream
vector for all components in the physical property
database, but this would have led to vectors of
impractical length. The format of the stream
vector is discussed in greater detail in section 4.1.

3. SIMULATION DATA

As discussed in section 2, the only information
flow between blocks is through the stream vec-
tors connecting the blocks. However, some blocks
require additional information such as physical
property data and reaction kinetics. The creation
of the stream vector also requires a list of compo-
nents present in the simulation. (See section 4).
A “Master block” was created as a storage space
for data required for the simulation. Data can
be stored in the userdata parameter of a block.
The databases and a list of components present in
the simulation are set as fields in a structure and
stored in the “Master” block’s userdata, where it
can be accessed by any block in the simulation.

3.1 Physical property database

The physical property database contains physical
properties of various components in the form of
a structure. The component names are stored in
the “Name” field of the structure. String com-
parisons between the database names and the
name field of the stream structure can be used
to determine the database indices of the com-
ponents in a stream. These indices can be used
to retrieve physical properties from the structure.
For example, ethanol is the 32th component in the
database. The molar mass of ethanol can by ob-
tained by typing “Database(32).MM”. These in-
dices are also used to identify components present
in the stream vector (See section 4.1). Temper-
ature and pressure dependent physical properties
such as heat capacity are stored in the database in
the form of a string with the function to be called
as well as the coefficients of the relevant equation.

3.2 Reactions and kinetics database

Modelling reactions requires information that is
specific to the reaction, for example the heat of
reaction and the rate equation used to model
the dynamics of the reaction. This information is

contained in a reaction database. This database
is also in the form of a structure. A reaction
database entry has fields containing

• the reaction in the form of a string;
• the stoichiometric coefficients of the products

and reagents;
• the product and reagent component names

in the form of strings;
• the name of the function file containing the

rate equation for this reaction;
• the constants to be used in this equation and
• the heat of reaction.

If a rate equation is not available for a particu-
lar reaction, elementary kinetics is assumed. The
stoichiometric coefficients are then also passed the
the rate equation function. The component names
of the products in the reaction are required by the
initialisation procedure (See section 4).

4. INITIALISATION PROCEDURE

4.1 Stream vector format

The stream vector contains the information re-
quired to represent the stream. This includes the
pressure, temperature and state of the stream, as
well as the flowrates of components in the stream.
A value of 1 in the phase position indicates liquid
streams and a value of 0 indicate vapour streams.
Two phase streams are not current handled. The
component flowrates appear in the stream vec-
tor based on the order in which they appear in
the physical property database. When the stream
vector is created, a list of database indices of
components present in the simulation is used to
determine the positions of the components. The
procedure is illustrated in figure 3.

Stream vector

[298 101 1 3 6 5]

Physical
property
database

List of active
components

[7 9 70]

data(7).Name = Acetic acid
data(9).Name = Acetone
data(70).Name = Water

Component
flowrates

Temperature,
pressure and

phase

Fig. 3. Component identification in the stream
vector

Consider a liquid stream at 298 K and 101 kPa
pressure, containing acetone, ethanol and water
(see section 5 for the handling of units). The

temperature, pressure and phase are the first three
entries in the stream vector. The last three entries
are the component flowrates. Using the order in
which the components appear in the database and
the list of active components, it can be seen that
component 9 (acetone) has a flowrate of three
kmol/s. This method of identifying components
is used to create the stream vector and to convert
the stream vector to a structure.

4.2 Creation of the list of active components

The above procedure requires a list of active com-
ponents. This list is required before the simulation
is run and is created during an initialisation pro-
cedure described below.

Components may enter a simulation at input
blocks (where the user may specify the state and
composition of a stream entering the simulation)
or as a product formed in a reactor. The following
steps are required to register these components
and create the list of active components:

• the physical property and reaction data are
loaded into the “Master” block’s userdata;

• input blocks and reactors retrieve the databases;
• the indices of the components entering the

simulation as feed streams or as products are
obtained and

• these indices are stored in the input blocks
and reactors’ userdata

All the above steps are carried out when the sim-
ulation is loaded, or when the “Update Diagram”
option from the edit menu is selected. Typically,
the user will create the simulation and specify all
the information required by the user interfaces
and will then update the diagram.

After the diagram is updated, the user clicks on
the “Master” block. The block launches a function
which searches the simulation for input blocks and
reactors and obtains the stored indices from these
blocks. The “ Master” block creates and stores the
list of active components. The steps are illustrated
in figure 4

This system finds the database index of each com-
ponent each time the simulation is run. A simpler
initialisation procedure would have been possible
if fixed indices where allocated to components.
However, this system allows components to be
added or removed from the database without af-
fecting the system. This is an important consider-
ation in an ongoing project.

Load databases into
master block's

userdata

Set product
database indices

as reactors'
userdata

Store component
database indices
as input blocks'

userdata

Input blocks
obtain database

from master
block

Reactors obtain
database from
master block

The master block searches
simulation for blocks with an input

block or reactor tag.

Master blocks obtains these blocks'
userdata

The master block compiles a list of
active components and sets this list

as the active field in the data
structure

Master block saves the data
structure in its userdata

Functions
called during

simulink
initialisation

Function
called when
clicking on

block

Fig. 4. The initialisation procedure

5. CREATING AND RUNNING A
SIMULATION

Creating a UOT process simulation is very similar
to creating an ordinary Simulink simulation. This
is very useful, since new Toolbox users can use
exisiting knowledge of Simulink when creating
a simulation. The required blocks can simply
be dragged from the Unit Operations Toolbox
library and dropped into a model window. Every
simulation must contain a “Master” block.

The Toolbox also contains several basic blocks
required to create a simulation. These include:

• an “Input” block, where the temperature,
pressure and state of components entering
the system are specified;

• a “Mixer block” which mixes two streams
without taking mass or energy accumulation
into account;

• a “Splitter” block, where a stream can be
split into streams with a specified ratio and

• “Plot” blocks, which retrieve a desired stream
property from the stream vector.

Streams entering the process are created by using
an input block for each component. The stream’s
state and flowrate is specified in the input block.
The user may specify the units of these values
by selecting units from a drop down list. The
values specified by the user are then converted
to a specific set of units which are used for all
calculations. These single component streams are

plot mass flow

plot2

plot mass flow

plot1

Non−dynamic mixer

mix

TerminatorPlug Flow Reactor

Subsystem

Scope4

Scope3

Scope2

Scope1

Plot Temperature

Plot

Click before running

Master

Component Input

Input1

Component Input

Input

Pressure

Fig. 5. A process simulation created with the Unit Operations Toolbox

then mixed to create a process stream. An energy
balance should be carried out if the streams are
at different temperatures. The same mixer block
can also be used to mix multicomponent streams.
Figure 5 shows an example of a simple process
simulation that can be created with the UOT.
Process parameters such as reactor diameters are
specified in the user interface for each block. The
user interfaces are created with the Simulink mask
commands. Figure 6 shows the interface for the
input block. A “Debug” mode can be selected. In
this mode, the models display messages indicating
which steps have been completed successfully.
This mode can be used to test new blocks.

Fig. 6. The user interface for the input block

6. CONCLUSIONS

The Unit Operation Toolbox is an simulation
package for educational purposes. The toolbox
should allow students to increase their under-
standing of the dynamics of chemical processes, as
well as the modelling of these dynamics. The ease
of use of the package plays an important part in

making the package an effective educational tool.
The package has the added advantage that users
may view the modelling code.

Since the Unit Operations Toolbox is an ongoing
project, it is important that changes in the format
of the stream vector and structure or changes in
the format of the databases should not require
extensive modification of earlier work. The simu-
lation framework that was created aims to achieve
this required extensibility and flexibility.

Another important consideration in the creation
of this framework is the user-friendliness of the
package. The creation of a Unit Operations Tool-
box process simulation is very similar to creating
an ordinary Simulink simulation. This familiar
environment should help new users of the Toolbox
to learn how to use the package.

REFERENCES

de Vaal, P. and Greef, P. (1998) “Dynamic mod-
eling of unit operations - a modular approach
applied to distillation columns”, South African
Journal of Chemical Engineering, 10 (2).

Laganier, F. (1996) “Dynamic process simulation:
tends and perspectives in an industrial con-
text”, Computers and Chemical Engineering,
20, 1595–1600.

Marquart, W. (1996) “Trends in computer-aided
process modelling”, Computers and Chemical
Engineering, 20 (6/7), 591–609.

Toebermann, J.; Rosenkranz, J.; Werther, J. and
Gruhn, G. (2000) “Block-oriented process sim-
ulation of solids processes”, Computers and
Chemical Engineering, 23, 1773 – 1782.

