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Abstract: This paper presents the design of a robust controller using the Quantitative 
Feedback Theory technique for an asymmetric hydraulic cylinder electro-hydraulic servo 
system based upon a linear, parametrically uncertain model in which some of the 
uncertainties reflect the variation of the parameters, and taking the external disturbance 
into account. After the derivation of a realistic nonlinear differential equations model, the 
linearized plant transfer function model is developed. The effects of parametric 
uncertainty are accounted for. In this paper, the tracking performance index and 
disturbance attenuation performance index are transformed into the constraints of the 
parametrically uncertain sensitivity functions respectively using the sensitivity-based 
QFT technique. From this point, the QFT design procedure is carried out to design a 
feasible robust controller that satisfies performance specifications for tracking and 
disturbance rejection. A nonlinear closed-loop system response is simulated using the 
designed controller. The results show that the robust stability against system uncertainties 
is achieved and the robust performances are also satisfied.  Copyright © 2003 IFAC 
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1. INTRODUCTION 

 
The single-rod cylinders have been widely used 

in the electro-hydraulic control systems, due to their 
some advantages, such as small room occupied, 
simplicity of structure, and low cost. Because of the 
complexity of hydraulic system and its 
corresponding operation environment, the systems 
are highly nonlinear and subject to parameter 
uncertainty in large scale. Model parameters change 
with time as a result of variations in operating 
conditions and uncertain environment. For example, 
the supply pressure is subject to fluctuation, which 
may be caused by the operation of other actuators in 
a multi-user environment. The flow and pressure 
coefficients, characterizing fluid flow into and out of 
the valve, are functions of load and supply pressure 
and can vary under different operating conditions. 
The effective bulk modulus in hydraulic systems can 
significantly change under various load conditions, 
oil temperature, and air content in the oil (Yu, et al., 
1994). So it is necessary to account for these 
uncertainties in control systems design of the 
hydraulic servo systems. This paper presents the 
application of QFT to the design of a robust position 
controller for the asymmetric electro-hydraulic servo 
systems. 

 
QFT is a robust controller design theory aimed 

at plants with parametric and unstructured 

uncertainties. The theory was first put forward by 
Horowitz (Horowitz, 1972; Horowitz, 1973; 
Horowitz, 1991). This method has been applied to 
many engineering fields, especially in the robust 
flight control systems (Houpis, et al., 1994; Phillips, 
et al., 1997). Additionally, Chait et al settled the 
controller design for a compact disc player using 
QFT (Chait, et al., 1994). Ismail introduced the 
application of the QFT for the TBT control of MSF 
desalination plants (Ismail, 2001). Regarding the 
application of QFT to the hydraulic systems, 
Thompson and Kremer developed a QFT controller 
for a variable-displacement hydraulic vane pump 
(Thompson, and Kremer, 1997). The simulation 
results were reasonable and satisfactory. The 
objective of this paper is to use QFT to settle the 
controller design for the position control of the 
electro-hydraulic servo system with the parametric 
uncertainties and disturbances. 
 
 

2. ASYMMETRIC ELECTRO-HYDRAULIC 
SERVO SYSTEM MODELING 

 

A schematic diagram of the asymmetric electro-
hydraulic servo system controlled by servo-valve is 
shown in Fig.1. In this section, we derive the 
nonlinear differential equations model of the 
asymmetric electro-hydraulic servo system and 



 

     

further the linearized plant transfer function, which is 
fit for QFT design with the parametric uncertainties. 
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Fig.1 Schematic diagram of the asymmetric electro-
hydraulic servo system controlled by servo-valve 
 
 
2.1 Nonlinear dynamic equations 
 

The governing nonlinear equations describing 
the fluid flows through the valve orifices are written 
as (Merritt, 1967): 

xv≥0 (extension) 

( )2
1 1d v sq c wx p pρ= −                   (1) 

( )2
2 2 0d vq c wx p pρ= −                  (2) 

xv＜0 (retraction) 

( )2
1 1 0d vq c wx p pρ= −                  (3) 

( )2
2 2d v sq c wx p pρ= −                 (4) 

where 1q  and 2q  denote fluid flows into and out of 
the servo-valve, respectively. dc  represents the 
orifice coefficient of discharge. w  represents the 
area gradient that relates the spool displacement vx  
to the orifice area. ρ  represents the mass density of 
the fluid. sp , 0p , 1p , 2p  represent supply pressure, 
return line pressure, head side pressure and rod side 
pressure of hydraulic cylinder, respectively. 

Continuity equations for oil flow through the 
cylinder, neglecting the leakage flow across the 
piston, are 

1
1 1 1

e

Vq A y p
β

= +& &                          (5) 

2
2 2 2

e

Vq A y p
β

= −& &                         (6) 

where 1A  and 2A  are the piston effective areas. y  is 
the piston displacement. eβ  is the effective bulk 

modulus of the hydraulic fluid, while 1V  and 2V  are 
the volumes of the fluid trapped at the sides of the 
piston. The relationship between them and the piston 
displacement can be described as 

1 01 1V V A y= +                          (7) 

2 02 2V V A y= −                         (8) 

where 01V  and 02V  are the initial volumes trapped in 
the head and rod sides chamber. 

Applying Newton’s second law to the forces on 
the piston, neglecting the nonlinear friction forces 
and the mass of oil, the force equation is 

1 1 2 2 c dA p A p my B y f− = + +&& &               (9) 

where m  denotes the total mass of the piston and 
payload. cB  is the viscous damping coefficient of 
piston and load. df  is arbitrary external load force 
acted on the piston. 

As for the servo-valve, it can be considered as 
first order system 

( )1
v v

v

u x x
k

τ= +&                        (10) 

where u , vk  and τ denotes the input voltage, gain 
and time constant of the valve respectively. 

Up to now, Equations (1)~(10) compose the 
nonlinear dynamic model of the hydraulic system 
which we study. 
 
2.2 Linearized transfer function model 
 

In the previous section, the nonlinear dynamic 
equations are derived. Now the linearized model with 
the variation of operating point dependent parameters 
described as uncertainties, which is fit for QFT 
design, can be obtained based on an operating point. 

As for the fluid flow equations of the servo-
valve, the linearized equations are 

1 1 1 1q v cq k x k p= −                       (11) 

2 2 2 2q v cq k x k p= +                     (12) 

here 1qk and 2qk , 1ck and 2ck denote the flow and 
pressure gains, respectively. Their representations are 

( )2
1 1q d sk c w p pρ= −    ( )2

2 2 0q dk c w p pρ= −  

( )1

12
d v

c

s

c wx
k

p pρ
=

−
    

( )2

2 02
d v

c
c wx

k
p pρ

=
−

   0vx ≥  

and 



 

     

( )2
1 1 0q dk c w p pρ= −    ( )2

2 2q d sk c w p pρ= −  

( )1

1 02
d v

c
c wx

k
p pρ

−
=

−
   

( )2

22
d v

c

s

c wx
k

p pρ
−

=
−

   0vx <  

Additionally, within the vicinity of the mid-
stroke, the assumption can be made 

( ) ( )1 2 01 021
2e e e

V y V y V V γ
β β β

+ ≈ ≈ = 
 

 

Thus, equations (5), (6) can be written as 

1 1 1q A y pγ= +& &                           (13) 

2 2 2q A y pγ= −& &                          (14) 

From equations (9)~(14), we can obtain the 
linearized model in the Laplace domain 

( ) ( ) ( )1 2( ) ( ) dY s P s U s P s F s= −           (15) 

where 

( )
( ) ( )

( ) ( )( )( ) ( ) ( )
1 1 2 2 2 1

1 2 2
1 2 1 2 2 11

v q c q c

c c c c c

k A k s k A k s k
P s

s s ms B s k s k A s k A s k

γ γ

τ γ γ γ γ

 + + + =
 + + + + + + + + 

                   (16) 

( ) ( )( )
( )( )( ) ( ) ( )

1 2
2 2 2

1 2 1 2 2 1

c c

c c c c c

s k s k
P s

s ms B s k s k A s k A s k
γ γ

γ γ γ γ
+ +

=
 + + + + + + + 

                         (17) 

To simplify the above transfer 
function, 1qk and 2qk , 1ck and 2ck are replaced by qk , ck , 
respectively. Hence transfer function (16) and (17) 
are reduced to (18), (19) 

( ) ( )
( ) ( )( )

1 2
1 2 2

1 21
v q

c c

k k A A
P s

s s ms B s k A Aτ γ
+

=
 + + + + + 

 (18) 

( ) ( )
( )( )2 2 2

1 2

c

c c

s k
P s

s ms B s k A A
γ
γ

+
=

 + + + + 
    (19) 

In the above two equations, the uncertainties of 
qk  and ck  denote the variation of the supply 

pressure, the operating point and the orifice area 
gradient of the servo-valve. The uncertainty of γ  
denotes the variation of the effective bulk modulus of 
the hydraulic fluid and the volumes of the fluid 
trapped at the sides of the piston. While the 
uncertainty of the servo-valve dynamics can be 
denoted by the variation of the parameter τ . 

These uncertain parameters stack in a vector, 
denoted as α . Then the open-loop transfer function 
of the system can be written as 

( ) ( ) ( )1 2( , ) , ( ) , dY s P s U s P s F sα α α= −       (20) 

The open-loop Bode plots of the plant set 
( )1 ,P s α  are shown in Fig.2. 
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Fig.2 The open-loop Bode plots of the plant 
set ( )1 ,P s α  
 
 

3. CONTROLLER SYNTHESIS 
 

The objective of this section is to design a 
robust position controller for the system that is 
represented by the uncertain transfer function (20). A 
typical two-degree-of-freedom feedback system 
configuration in QFT is shown in Fig.3. A proper 
controller, ( )G s , and a proper prefilter, ( )F s , are to 
be designed such that the following conditions are 
satisfied. 

+ -
-
+( )F s ( )G s

( )dF s

( )Y s

( )H s

( )
( )

1

2

,
,

P s
P s

α
α ( )2 ,P s α

)(sU

Fig.3 Two-degree-of-freedom QFT feedback control 
system 

1) Closed-loop robust stability 



 

     

1.3
1

PG
PG

≤
+

，  [ )0,ω∀ ∈ ∞ ，  (21) 

The above stability requirement implies an 
approximately 2.3dB gain margin for the closed-loop 
system. 

2) Robust tracking performance 

( ) ( ) ( ),l ry uT j T j T jω ω α ω≤ ≤ ， [ )0,ω∀ ∈ ∞   (22) 

where ( ) ( ) ( ) ( )
( ) ( )

,
,

1 ,ry

F s P s G s
T s

P s G s
α

α
α

=
+

, and the upper 

and lower tracking bounds are defined as  

( ) 2

5 150
20 150u
sT s

s s
+=

+ +
，

( )
( )( )2

1000
30 10 100 3lT s

s s s
=

+ + +
. 

The determination of these bounds of the 
closed-loop tracking frequency domain performance 
does not have the uniform theory. But these bounds 
can be defined by the time domain performances. 
Such as peak overshoot and settling time etc. of the 
system step responses. The specific procedure can be 
referred to the literature (D’Azzo, and Houpis, 1995). 
In this paper, the settling time is not more than 0.6s 
corresponding to ( )lT s . The overshoot is not more 

than 2% corresponding to ( )uT s . 

3) Closed-loop disturbance attenuation 

As for the disturbance attenuation at the plant 
output, the corresponding performance specification 
can be embodied by the following inequality 

( )
( ) ( ) ( )2

1

,
max

1 , d

P j
w

P j G jα

ω α
ω

ω α ω∈Ω
≤

+
[ )0,ω∀ ∈ ∞  (23) 

where  

( ) ( ) ( ) ( )
( ) ( )

3 2
7

2

60 750 2400
2.0(10 )

15 170
d

j j j
w

j j

ω ω ω
ω

ω ω
− + + +

=
+ +

 

The above design specifications can be 
transformed into the constraints of the loop transfer 
function ( ) ( ) ( )0 10L s P s G s= . These constraints 
shown on a Nichols chart compose the so-called QFT 
bounds. In the initial design, ( )G s  can be simply 
evaluated by 1. Of course, it can also be obtained 
from other control theory, such as H∞  method (Zhao, 
and Jayasuriya, 1998). In the process of loop shaping, 

( )0L s should satisfy these bound constraints. Then 

the controller can be extracted from ( )0L s  by 
dividing by the nominal plant transfer 

function, ( )10P s  which should be kept invariant in the 
design process. Design frequencies are chosen as  

[ ]0.1,1,3,5,10,60,80,100,130,180,200,300ω = . 

 

Fig.4 QFT bounds and system loop transfer function 

The bounds generated by constraints (21), (22), 
(23) and the final loop shaping of the system are 
shown in Fig.4. In the process of loop shaping, 

( )0L s  should lie on or above the bounds to satisfy 
the bounds at low frequencies, while for higher 
frequencies ( )0L s  should not enter the closed 
boundaries generated by the constraints. The 
controller that satisfies the specifications is 

( )

2

2

2

2

0.6873.2 1 1
4.9 118.6118.6

0.421 1
17.63 512.1512.1

s s s

G s
s s s

  + + +  
  =

  + + +  
  

 

To satisfy the tracking specification, a prefilter 
is to be designed to place the closed-loop frequency 
response between ( )uT s  and ( )lT s . So the suitable 
prefilter is designed to be 

( )

2

2

2 2

2 2

13.59 1
10001000

1.41 0.1761 1 1
8.54 34.76 100034.76 1000

s s

F s
s s s s s

 
+ + 

 =
   + + + + +   

   

 

 
 

4. CLOSED-LOOP ANALYSIS 
 

The aforementioned controller design is based 
on the finite frequency points. So it is necessary to 
verify through analysis whether it can guarantee to 
satisfy the specifications in total operating points of 
the system or not. The analysis results for the gain 
margin, the tracking performance and the disturbance 
attenuation are shown in Fig.5, Fig.6 and Fig.7, 
respectively. The step responses of closed-loop 
control system are shown in Fig.8. As can be seen, 
for all cases pertaining to extreme parts of the 
operating envelope, the specifications are satisfied. 
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Fig.5 The analysis curves of stability 
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Fig.6 The analysis curves of tracking performance 
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Fig.7 The analysis curves of disturbance attenuation 
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Fig.8 The step responses of closed-loop system 
 

 
5. CONCLUSION 

 

This paper has described the application of the 
QFT method to the development of a position 
controller for the electro-hydraulic servo system. A 
linear fourth order model with parametric 
uncertainties was obtained to describe the 
relationship between the control signal and the 
position of piston. A robust position controller was 
designed using QFT method that, along with a 
reasonable prefilter, maintains a satisfactory position 
control performance against the model parametric 
uncertainties and the external disturbance. The 
results show that the designed controller is effective 
and feasible to the electro-hydraulic servo system. 
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