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Abstract: The design of an antilock braking system controller (ABS), that
automatically minimizes the braking distance by adjusting the braking torque in
response to the wheel slip, is developed and experimentally tested for a quarter-car
model. A robust, real-time proportional-plus-integral (PI) controller algorithm for
the wheel slip is implemented through a microcontroller GPC850. The controller
gains are scheduled based on the rotational velocity of the driving wheel.
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1. INTRODUCTION

The world's �rst ABS controller for passenger
cars was introduced in 1978 by Bosch, with the
primary objectives of preventing wheel-lock, re-
ducing stopping distance, and enhancing steer-
ability during braking (Johansen et al., 2003),
(Petersen et al., 2003), (Will et al., 1998), and
(Solyom, 2002). There are conceptually two types
of control strategies being used in ABS con-
trollers: (a) acceleration-control based, and (b)
slip-control based. The former indirectly controls
the slip by using wheel deceleration/acceleration
which is computed from the wheel angular ve-
locity measurements. The major disadvantage of
this method of control are the noticeable vibra-
tions experienced during braking. Theoretically,
the slip-control based method is the ideal method.
It involves keeping the actual slip rate at an op-
timal target slip using continuous control during
braking (Jun, 1998).
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Various researchers have suggested di�erent con-
trol approaches for designing the ABS controller.
Most of the current mass production ABS con-
trollers are rule based (Wellstead and Pettit,
1997). (Solyom, 2002) uses PI and PID con-
trol with gain scheduling based on the vehicle
speed. (Jiang and Gao, 2001) show that nonlin-
ear PID controller achieves better braking perfor-
mance than conventional PID controller and loop-
shaping controller. Sliding mode-type approaches
to slip control are considered in (Buckholtz, 2002),
(Will et al., 1998), and (Drakunov et al., 1995).
LQR approaches with gain scheduling based on
vehicle speed are used in (Johansen et al., 2003),
(Petersen et al., 2003), and (Johansen et al., 2001)
to design ABS controllers.

This paper focusses on extending and imple-
menting the ABS schemes proposed mainly by
(Schinkel, n.d.) and (Solyom, 2002) for a special
class braking systems actuated by fast acting elec-
tromechanical systems. A further contribution is
the use of a resource constrained general purpose
microcontroller as oppposed to the use of a on-
board microcomputer as is most implementations.



The paper is outlined as follows. Section 2 gives
the system description together with the mathe-
matical model of a quarter-car. Stability analysis
of the plant is carried out in this section by casting
the system nonlinear equations into piecewise lin-
ear equations. ABS Controller design is presented
in section 3. The PI controller gains are tuned for
best braking performance in this section. Section
4 presents the numerical simulation of the plant
with the controller in Simulink. The paper closes
with conclusions and recommendations for future
works.

2. SYSTEM MODEL

The system is a combination of an Atmel Gen-
eral Purpose microcontroller (AT90S8535) micro-
controller, which is programmable using BASCOM-
AVR, an electromagnetic braking mechanism and
an appropriate power supply and ampli�er to am-
plify the signal from the controller. The integrated
system representation is indicated in Fig. 1. The
braking mechanism consists of the following: an
optical encoder, a small driven wheel, a brake
disk, and a brass shaft that holds the compo-
nents together. The proposed braking mechanism
employed in the model validation system uses a
mild steel casing to neatly encase the coil and
acts as a journal bearing for the brass shaft. The
casing has a steel core situated at its centre; the
core is used as an electromagnet, and is energized
by the coil. Once the coil is energized it sets up
magnetic �elds within the core, which attracts the
brake disk, the disk then clamps against the outer
rim of the casing causing a substantial amount
of friction, and this in turn creates the retarding
torque. The braking mechanism is coupled to a
larger driving wheel, to simulate the e�ect of a
driven wheel translating on a stationary surface.
Fig. 2 shows the complete mechanical system.

Applying Newton's law to the quarter-car model
shown in Fig. 3 gives the equations of motion as
follows:

Idr _!dr =�� (� (t))NRdr

Iw _!w =Rw� (� (t))N �Mbr (1)

where Idr and Iw are the moments of inertia of the
driving and driven wheels respectively, !dr and
!w are the angular velocities of the driving and
driven wheels respectively, Rdr and Rw are the
radii of the driving and driven wheels respectively,
N is the interface normal force, Mbr is the braking
torque, � is the interface friction coeÆcient, and
� is the longitudinal wheel slip. The wheel slip is
de�ned as:

� = 1�
Rw!w
Rdr!dr

(2)

Fig. 1. System block diagram

 

Fig. 2. Complete mechanical system

Hence, a locked wheel (!w = 0) is described by �
= 1, while the free motion of the wheel is described
by � = 0. The interface coeÆcient of friction,
�, depends nonlinearly on the longitudinal wheel
slip. Typical plots of friction coeÆcients versus
longitudinal wheel slip for di�erent surface con-
ditions are shown in Fig. 4. Using (1) and (2) for
!dr > 0 and !w � 0 gives the wheel slip dynamics:

_� = �
�(�)N

!dr

�
1

Idr
(1� �) +

R2

w

IwRdr

�
+

Mbr

IwRdr!dr
(3)

Idr _!dr = �� (�)NRdr (4)

When !v tends to zero, the dynamics of the open
loop system becomes in�nitely fast with in�nite
gain (Johansen et al., 2003).



Fig. 3. Free-body diagrams of the driving and
driven wheels

Fig. 4. Typical friction coeÆcient curves for dif-
ferent surface conditions

Assuming that the rotational velocity of the drum
varies more slowly than other variables and letting
A = Rw=(IwRdr) gives:

_�!dr = ��NRwA+MbrA (5)

Letting � = NRwA, one obtains the �nal ex-
pression of the single-input-single-output control
problem

_� =
�

!dr
� � (� (t)) +

A

!dr
Mbr (6)

The task of the ABS controller is to robustly stabi-
lize the system around the maximum friction, such
that a minimum braking time is needed and the

car's steerability is maintained. In order to ana-
lyze the stability of the system and design the con-
troller, it is necessary to cast the nonlinear equa-
tions into piecewise linear equations. This may be
done by approximating the friction/slip curves by
piecewise linear functions. After a piecewise linear
representation for the friction/slip curves has been
found the nonlinear model of the braking quarter
car may be linearized. In order to cover all possible
dynamics, it is appropriate to approximate the
�(�) curves with two piecewise linear functions:

� = a� for� � 0:1

� = �
1

4
�+

3

4
� 0:2 for� > 0:1 (7)

where a 2 [5.75; 9.75] and the notation �0,2
indicates that any arbitrary, not necessarily �xed,
value can be assumed in the interval (-0.2, 0.2).
With this approximation one may cover most
values of �.

For linearization one may approximate the system
by the �rst terms of the Taylor series:

f (�; !dr)� f (�0; !dr0) +

�
@f

@�

�
�0;!dr0

(�� �0)

+

�
@f

@!dr

�
�0;!dr0

(! � !dr0) (8)

such that one will get a linear (aÆne) system
description:

_x=Aqx+Bu� +Eq

y=Cqx

q= f (x) (9)

where x and q are the continuous and discrete
states respectively. The term u(t) is the control
input and Aq , B and Cq are the system, input and
output matrices, respectively, of the subsystems.
Eq are the aÆne terms and f(x) is the function
indicating which subsystem is valid. For each
subsystem q 2 [1, 2, : : :, M], which are subsystems
where � � 0:1 one obtains:

Aq =

2
64
0 �

aNRdr

Idr

a
��0
!2

dr0

�a
�

!dr0

3
75 (10)

Eq =

2
4 0

�a
��0
!dr0

3
5 (11)

and for subsystems q 2 [M+1, M+2,,N], which are
subsystems where � > 0:1 one obtains:
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2
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Eq =
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� 0:4
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and BT = [0, A], u� = u� !dr and xT = [!dr,
�] for q 2 [1, 2, : : :, N]. It may be seen that the
time-varying nonlinear system has been cast into
a linear hybrid system with uncertainty.

For the stability analysis the system matrices are
transformed into controller canonical form: Aq =
TAqT

�1 with T1 and T2:

T1 =

2
4� Idr

aNRdr

0

0 1

3
5 T2 =

2
4 4Idr
NRdr

0

0 1

3
5 (14)

such that where � � 0:1:

Aq =

2
4 0 1

�a2
��0Idr

NRdr!2

dr0

�a
�

!dr0

3
5 (15)

and where � > 0:1:

Aq =

2
4 0 1

NRdr�

4Idr!2

dr0

��
�
1
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�0 +

3

4
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� 0:2

�
�

4!dr0

3
5(16)

Since the system matrices are now given in con-
troller canonical form it is possible to inspect
whether or not the systems are stable. A system
is Hurwitz stable if and only if all coeÆcients in
the lowest row of the system matrix in controller
canonical form are negative. One may immedi-
ately see that the subsystems q 2 [1, 2,: : :, M],
i.e., subsystems where � � 0:1 are stable since the
coeÆcients in the lower row of the system matrices
are negative for all possible parameter variations.
However, the subsystems q 2 [M+1, M+2, : : :,
N], i.e., systems where � > 0:1, are not globally
stable. None of the subsystems are valid on the
whole state space, however, and hence a check
must be performed to ascertain if the subsystems
for � > 0:1 converge for 0:1 < � � 1 and 0 < !dr.
Taking equation 1 and applying equation 9 for
� > 0:1

_!dr =
RdrN�

4Idr
+

�
�
3

4
� 0:2

�
RdrN

Idr
(17)

which is less than zero for all values of slip, �, in
the constraint as the maximum is seen to be when
� = 1, which is negative. Hence for all values of
� and !dr the di�erential equation converges to
values which belong to subsystems represented in
system (12). The di�erential equation for � in the
region � > 0:1:

_� =
��

4!dr
+

�
�
3

4
� 0:2

�
�

!dr
(18)

Fig. 5. Control problem system diagram.

has a right hand-side which is also negative for
all admissible � and !dr. This can be seen if a
value of � is substituted which would make the
equation as least negative as possible. This value
is � = 1, which indicates that the equation is neg-
ative for all admissible velocities !dr. Hence, this
di�erential equation also converges to values of �
which belong to subsystems (12), for all admissi-
ble values of the states. It was illustrated that the
subsystems (12) and (14) converge individually,
for all admissible initial states, to x = 0. In general
this does not mean that the whole system is stable.
However, since the states converge for any initial
condition from subsystems (14) to states which
belong to the subsystems (12) and (12) converges
to zero, x ! 0 as t !1 and hence the system is
stable.

3. CONTROLLER DESIGN

The system diagram corresponding to the state-
ment of the control problem presented in equation
5 is illustrated in �gure 5 where the input to the
system u(t) is the braking torque. Due to high
uncertainty in the real process, it is natural to
look for a simple robust controller which can easily
be tuned. Therefore, a PI (proportional-integral)
controller was selected and the gains are scheduled
based on the rotational velocity of the driving
wheel. The bandwidth of this model may be shown
to be directly related to !dr, that is, the band-
width is smaller for higher !dr. Therefore, it is
natural to design the controller to counteract this
variation. The controller gains are scaled by !dr to
ensure a higher gain for high rotational velocities.
In particular, when the system is operating at
maximum friction, i.e., at the top of the friction
curve, this scaling will theoretically remove the
dependence on velocity of the driving wheel.

The objective is to design a controller which
decelerates the vehicle as fast as possible and



maintains steerability. From previous analysis, the
maximum deceleration is reached at a slip of � =
0,1.

At such a slip the wheel is far from being locked,
which implies that the steerability of the car may
be maintained. We have also seen that it is sensi-
ble to approximate the nonlinear car dynamics by
equations 12 and 14. For equation 12, i.e. subsys-
tems where � � 0:1, the primary objective would
be to increase or maintain � such that _� � 0 . For
equation 14 � is required to be reduced such that
one may obtain better steerability and braking
performance, i.e. we would like _� < 0. We compute
now the control input space in dependence of the
state space. For _� � 0:

0 � �
�

!dr
a�+

A

!dr
Mbr (19)

and hence

�

A
a� �Mbr (20)

Similarly, for the condition of � > 0:1:

�

A

�
�
1

4
�+

3

4
� 0:2

�
�Mbr (21)

Hence, limits on the braking torque have been
generated which will ensure that wheel lock will
not occur for the system on either side of the
equilibrium point.

To realise a continuous controller that stabilizes
the system, one may design a sliding mode con-
troller, where the sliding surface is:

s =

�
d

dt
+K

� tZ
0

ed� (22)

where e = ���d. Therefore, _s = _e+Ke and thus

_s = �
�

!dr
� (� (t)) +

A

!dr
Mbr +Ke (23)

To stay on the surface _s = 0 is required. Solving
for Mbr and adding the term which forces the
trajectory to stay on the surface we get the control
input

Mbr = (�Ke!dr + �� (� (t))) =A (24)

The control input is a function of the friction
which is unknown. To overcome this an observer
can be designed. However, it is known that fric-
tion observers have poor performance, and there-
fore it would be advisable to pursue a modi�ed
strategy. A heterogeneous hybrid controller may
subsequently be implemented, which has a simi-
lar structure to the sliding mode controller. The

controller uses 2 di�erent control strategies. The
�rst is active for � smaller than 0.1 and aims to
increase �

Mbr = �Ke!dr=A (25)

The proportional integral controller is subse-
quently used to stabilise the system around the
equilibrium point � = 0.1. The transfer function
of the controller may be expressed as:

C (s) = Kp

�
1 +

1

sTi

�
(26)

which implies that:

Mbr (s) = �Kp

�
1 +

Ki

s

�
e (s) (27)

Due to the fact that the time span over which the
dynamics of the system reside in the region of slip
less than 0.1 is small, the gain for the proportional
controller in the two regions is considered to be
the same, i.e., K = Kp.

For plants that can be approximated by a �rst or-
der dynamical system, the Ziegler-Nichols method
for tuning PID controllers is recommended. In
this case the closed-loop system step response is
characterized by a damping ratio close to 0.5.
The Ziegler-Nichols method is based on a stability
analysis. The tuning of a PID controller is possible
without knowledge of the plant and hence the
method is well suited to tuning of controllers of
stable plants with bounded uncertainties in the
system parameters. For the closed loop system
with the proportional gain set to some value and
the integral gain set to zero, the proportional gain
is increased until the system becomes oscillatory.
Once the marginally stable response is obtained,
all of the information necessary to calculate us-
able controller tuning constants is available. The
oscillation frequency is denoted by m and the
corresponding gain of the proportional controller
by Km. Subsequently, the optimal gains for the
controller are given by

Kp = 0:45Km Ti =
10�2

3!2
m

(28)

and hence

Ki =
0:135Km!

2

m

�2
(29)

With reference to the presented method, the gains
for a number of arbitrary driving wheel rota-
tional speeds were obtained, using the single-
input-single-output model indicated in �gure 5
implemented in Simulink, in order to ascertain
the correct scheduling of the gain with respect to
!dr. The results are presented in Table 1. From



Table 1. Controller gains using Ziegler-
Nichols method.

!dr Km !m Kp Ki

10 20 9.5 9 24.7

100 200 9.56 90 250

the above analysis it may be seen that that the
gain in the integral and the proportional element
is approximately linear with respect to the driving
wheel angular velocity. It is therefore proposed
that the structure of the controller gain scheduling
is

u (t) = kp (�0 (t)� � (t))!dr (t)

+

Z
ki (�0 (t)� � (t))!dr (t) (30)

This allows for a single value of a nominal gain to
be selected based on the region of slip in which
the system is operating as identi�ed by ki in the
above equation

4. SIMULATION

For the purpose of simulation of the system
with the calculated gains, the full multiple-input-
multiple-output mathematical model of the plant
and controller was analysed in Simulink. The sim-
ulation was performed to determine the degree to
which the system operation correlates with the
required performance speci�cation. The response
of the system in decelerating the driving wheel
may be plotted as the equivalent linear speeds of
the driven and driving wheels against time. The
result is shown in Fig. 6. From an analysis of Fig.
6 and Fig. 7 it may be seen that the controller
accurately tracks the required setpoint of slip of
0.1. This is due to the fact that with the initial
proportional controller active, for the region of slip
less than 0.1, the state of the system is rapidly
accelerated to the required region of operation
and then the activation of the integral element
maintains the state at the required setpoint.

5. CONCLUSIONS

Following a brief introduction to ABS, a non-
linear car model was introduced which captured
the longitudinal braking dynamics. In addition, a
description of the mechanical controller test bed
was given. It was shown that the dynamics of the
quarter car test rig could be cast into a linear
hybrid system with uncertainty. The uncertain-
ties captured the unpredictable changes in road
friction due to changes in surface conditions (wet,
dry). It was shown that the dynamics are sta-
ble and that the maximum braking performance
occurs at � = 0.1. The control input space was

 

Fig. 6. Speed response of the ABS controller

 

Fig. 7. Slip response of the ABS controller

computed and it was shown that for � 2 [0:0.1]
the slip has to be increased in order to increase the
friction. For slip � > 0.1, the slip has to be reduced
to increase the friction and maintain steerability.
It was shown that a PI controller with gains sched-
uled in relation to the driving wheel rotational
speed and the measured slip could be used to
stabilize the system about the optimum slip � =
0.1. The analysis did not take into account the
controller time lag or the actuator dynamics, and
hence further work could concentrate on increased
accuracy in the representation of the full system
dynamics.
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