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Abstract: This short paper addresses problems related to the funding of continuous
time systems that accumulate capital (during the accumulation phase) for financial
obligations that are to be paid sometime in the future (in the decumulation phase).
In this situation there exists a fund (henceforth referred to as the ”Fund”) subject to
contributions and drawdowns. The Fund will hold assets and may have liabilities that
are contractual or semi-contractual. In the main, such funding systems will involve the
interplay between the need to minimize contributions that support the Fund and the
need to maintain reasonable solvency in the Fund. This set-up leads to a stochastic
optimal control problem that may be solved by making use of methods related to
dynamic programming and capital asset pricing modelling (CAPM).
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1. INTRODUCTION

The use of stochastic optimal control theory in
solving problems related to discrete and contin-
uous time financial systems is an emerging area
of research in mathematical finance. For instance,
stochastic control problems are often encountered
in the context of pricing and hedging in com-
plete and incomplete markets (see El Karoui and
Quenez, 1991 and El Karoui and Quenez, 1995);
consumption and portfolio selection (see Merton,
1969 and 1971 and Karatzas, et al., 1987) insur-
ance and reinsurance (see, for instance, Hipp and
Taksar, 2000), loan and debt management (see,
for instance, Hellwig, 1977 and Taksar and Zhou,
1998), interest rate models (see, for instance, Pe-
tersen, et al., 2003) and funding systems (see, for
instance, Vandebroek, 1990; Boulier, et al., 1995;
Boulier, et al., 1996; Cairns and Parker, 1997;
Cairns, 2000 and Taylor, 2002). Examples of the
latter are, for instance, retirement funds such as

pension and provident funds, retirement annuities
and preservation funds.

This contribution investigates the use of stochas-
tic control in solving problems in continuous time
funding systems like defined benefit pension funds
(provide benefits to members that are defined in
terms of a member’s final salary and the length
of membership in the company), shareholder div-
idend payments by insurers and the maintenance
of a prudential margin (usually decided upon by
statutes) by a non-life insurer. In this paper we
will consider the randomness that arises in such
Funds because of the inherent uncertainty in in-
vestment returns relative to salary growth. As a
result the only sensible thing to do is to cast the
Fund in a stochastic framework. The said Fund
will hold assets (any item of economic value owned
by the Fund, especially that which could be con-
verted to cash) and may have liabilities (financial
obligation, debt, claim, or potential loss) that are



contractual or semi-contractual. The contributor
(usually the employer) to the Fund usually has at
least two variables under his control during this
process, viz., how the random rate of contribu-
tion should be varied and how assets should be
disposed (sold, exchanged or retired) per sector.
Furthermore, the aforementioned Fund remains
solvent only if assets exceed liabilities with the
value of these notions largely being uncertain.
Optimal control is usually used to ascertain how
rates of contribution to the Fund and allocation of
its assets per asset sector would react to a change
in solvency. In this regard, results are usually
obtained from a stochastic differential equation
whose solution may be determined by numeri-
cal means. Further (stochastic and determinis-
tic) optimal control problems related to those set
out above are discussed fairly extensively in the
literature. For instance, in the retirement fund-
ing framework, we have Haberman, et al. (2000);
Haberman and Sung (1994); O’Brein (1986) and
(1987); Owardally and Haberman (1996); Parlar
(1981); Taylor (2002) and Vandebroek (1990).

The motivation for studying the control and struc-
ture of Fund dynamics is that it is becoming
increasingly important that Fund members be-
come aware of factors affecting defined benefits
promised by Funds and sponsoring employers take
cognicance of the timing and stability of cash-
flows. In defined benefit pension funds, for exam-
ple, pension and other benefits are not dependent
on past investment performance. Instead the risk
associated with future returns on the fund’s assets
is borne by the employer. This manifests itself
through the contribution rate which must vary
through time as the solvency ratio or funding level
fluctuates above and below its target level. If these
fluctuations are not taken into account, i.e., if the
contribution rates remains fixed, then the fund
will eventually run out of assets from which to pay
the benefits or grow exponentially out of control.
In essence the use of optimal control theory in
funding systems is motivated by the need to gain
a deeper understanding of the solvency of the
Fund and the factors that affect it. In particular,
sponsors would like to make informed decisions
about which contribution rates are optimal in
the light of the solvency issue mentioned earlier.
The shear monetary size of the retirement fund
industry is also a factor that motivates the study
of funding systems. In South Africa, for instance,
it is estimated that the private and public sectors
together support in excess of 15 000 funds with
more than 10 million fund members and total
assets of approximately 1 trillion South African
Rand.

The procedure that we follow in order to solve the
stochastic optimal control problem for continuous
time funding systems is similar to those that are

employed for other financial systems like incom-
plete markets. The main steps are outlined below.

Step 1: After careful consideration of the fi-
nancial model, select the variables that have
uncertainty associated with them and that can
therefore be modelled as random variables or
stochastic processes. From the deterministic
and stochastic variables identify those that can
be regarded as control functions. It is preferable
that stochastic variables should be able to be
represented explicitly in the form of stochastic
integral or differential formulas.

Step 2: Consider the relationships between the
stochastic variables identified in Step 1 and real-
ize these connections as (systems of) stochastic
differential equations.

Step 3: If necessary, make use of some type
of model reduction to reduce the (system of)
stochastic differential equations determined in
Step 2 into standard stochastic systems and
control form. At least one of the components of
this system should contain the control function
identified in Step 1.

Step 4: Deduce an appropriate objective or cost
function in stochastic integral form that has
to be optimized, i.e., minimized or maximized,
from the financial system found in Step 3. Care
has to taken in order to ensure that the function
is well-defined and appropriate constraints are
chosen.

Step 5: Apply one or more of the available meth-
ods of approaching stochastic control prob-
lems to solve the problem at hand. Some
methods that are available are dynamic pro-
gramming (open loop method), numerical so-
lution of the Bellman equation (based on the
discretization of the Hamilton-Jacobi-Bellman
Equation), Markov chain approximation meth-
ods, regular pertubation methods, Monte Carlo
techniques (probabilistic), binomial/trinomial
trees (probabilistic), stochastic approximation,
stochastic programming (closed loop method),
stochastic maximum principle (Pontryagin),
convex duality methods, martingale approaches
(like the martingale transformation method)
and stochastic linear quadratic theory.

Step 6: Test that the solution obtained in Step 5
makes sense in a real-world situation. This will
in all likelihood involve producing a numerical
example to illustrate the theory.

2. THE FUNDING SYSTEM

In this section we describe aspects of the Fund
that are important for the ensuing analysis.
Throughout we assume that the fund member-
ship structure remains stable although it is not
uncommon for the company contributing to the



Fund to restructure and evolve during both the
accumulation and decumulation phases. We show
that concepts related to the Fund such as rates
of drawdowns, investment returns and increase of
liabilities before drawdowns may be modelled as
random variables that are driven by an associated
Wiener process and may be expressed explicitly
in terms of their respective expected values and a
diffusion term. Furthermore, we are able to pro-
duce a system of stochastic differential equations
that provide information about Fund assets at
time t denoted by A; and Fund liabilities at
time t denoted by L; and their relationship.
Responsibility for the assets of a pension fund
is usually borne by a group of Fund managers
and/or trustees who must have the best interests
of the Fund members at heart. They choose how
the Fund assets are invested with the particular
investment strategy depending on such factors as
tax status, maximization of returns, minimiza-
tion of risk, diversification, security, avoidance of
self-investment and cashflow specifications. A; is
stochastic in nature because it depends in part on
the stochastic rates of return of the investments of
the Fund. Also, L; is stochastic because its value
has a reliance on the liability cash flows and asset
values that both have randomness associated with
them. The Fund’s assets A; may be described as
the amount that remains when past drawdowns
are deducted from contributions and investment
returns. Furthermore, we use the notation X; for

Ay
X = 1
=] 0
and represent the funding level or solvency
ratio, Sy, of the Fund as

St = A /Ly (2)

It is important for Fund solvency that S; has to
maintain a high value. Obviously, low values of S;
indicate that the fund is struggling to stay solvent.

In the main, the sponsoring employer is free to
choose how the contribution rate can be varied.
The underlying principle governing this decision
is that the amount of surplus or deficit has to be
taken into account. Roughly speaking, the rate of
contribution can be reduced during times of sur-
plus and should be increased beyond the normal
rate when the Fund is in deficit. In the sequel, the
deterministic variable x(¢) is the normal rate of
contributions per unit of the Fund’s liabili-
ties. In this case x(t)dt turns out to be the value
of contributions per unit of fund liabilities over the
time period (t,¢ + dt). A notion related to this is
the adjustment to the rate of contributions
per unit of the Fund’s liabilities for surplus
or deficit, a(t,S;) that depends on the solvency
ratio. Here the amount of surplus or deficit is

reliant on the excess of assets over liabilities. We
denote the sum of xy and a by the contribution
rate k, i.e.,

r(t) = x(t) + a(t,S). (3)

The contribution rate k is a predictable process
and, as we shall see in the sequel, provides us with
a means of controlling the dynamics of the Fund.
The rate of drawdown per unit of the Fund’s
liabilities, §(t), is given by

S(t)dt = Bé(t)dt + o5dWs(t), (4)

where 0(¢) is a random variable, o is the volatility
in the drawdown per unit of the Fund’s liabilities,
Ws(t) is a standard Wiener process and 6(t)dt is
the value of drawdowns per unit of fund liabili-
ties over the interval (¢,t + dt). Furthermore, we
consider

plt)dt = Bp(t)dt + 0,dW, (1), ()

where the random variable p(t) in (5) is the rate
of investment return on Fund assets, 0, is
the volatility in the rate of investment return on
Fund assets, W,(t) is a standard Wiener process
and p(t)dt is the value of investment return on
Fund assets over the time period (¢,t + dt). We
suppose from the outset that the Fund invests
in a financial market with n + 1 financial assets.
One of these assets is risk free and will be called
a money market. Assets 1, 2, ..., n are risky
and will be known as stocks. These assets evolve
continuously in time and are usually driven by
a d-dimensional Wiener process (1 < d < n +
1). In this multidimensional context, the rate of
investment return on Fund assets in the k-
th asset is denoted by px(t) and we assume that
the expectation of py(t) may be represented by

Epi(t) = Epo(t) + KBy, (6)

where

Bk = Kkn(t)/knn(t) independent of ¢,  (7)
and K > 0 is a constant.

We can choose from two approaches when mod-
elling our Fund in a stochastic setting. The first is
a realistic model that incorporates all the aspects
of the Fund like salary growth, individual mor-
tality and individual members. Alternatively, we
can develop a simple model which acts as a proxy
for something more realistic and which emphasizes
features that are specific to our particular study.
In our situation we choose the latter option, with
the notions of Fund assets A; and liabilities L; at
time ¢ and their relationship being modelled by
the stochastic differential equations



diy = p(t) Avdt + [k(t) — (B)]Ledt;  (8)
dL; = [1(t) — 6(¢t)|Ledt, (9)

where, for the rate of increase of liabilities
before drawdowns, ((t), the volatility in the
increase of liabilities before drawdowns, o,, and
corresponding standard Wiener process W, (t), we
have

1(t)dt = Eu(t)dt + o,dW,(1). (10)

The random variable «(¢) in (10) may typically
originate from liabilities that have recently been
accrued or instability in the value of pre-existing
liabilities that may result from factors such as,
for example, inflation. The stochastic differen-
tial equations (8) and (9) may be rewritten by
substituting appropriate terms from (4), (5) and
(10). This procedure yields an alternative system
of stochastic differential equations that may be
expressed as

dAy =Ep(t)Acdt + [6(t) — 6(t)]Ledt  (11)
+o, A dW, (1) — a5 Lo dWi(2);

dL; =[Eu(t) — Eo(¢t)]Lsdt (12)
+o,LidW,(t) — o5 dW;5(t).

By considering the vector form X; in (1) the

equations above can in turn be rewritten into
standard stochastic systems form as

dXe = M (t) Xedt + N(t) k(t)dt
+G(t) dW (), (13)

where the various terms here are defined as fol-
lows.

N(t) = [Hg] , (15)

o =" T o) 09
RO

W(t) = | Ws(t) |, (17)
W.(t)

where W,(t), Ws(t) and W,(t) are mutually
(stochastically) independent Wiener processes.

Next, we introduce a diffusion process, ¢, that
may be represented as

o(t)dt = E¢(t)dt + H(t)dWy(t), (18)

where Wy (t) is a d-dimensional Wiener process
that is mutually (stochastically) independent of
Ws and W, and H(t) is a matrix of dimension
(n x 1) x d such that

L{p(t)dt] = Ht)H(t)Tdt = C(t)dt  (19)

where ratios of pairs of C'(t) are independent of ¢
and

o(t) = [po(t), pr(t), ...y pa®]".  (20)

In the sequel we will make use of a Capital Asset
Pricing Model (CAPM) structure to analyze (18).

Various concepts related to the expected value of
the rate of return per sector, Ep.(t), in (6) are
presented next. Firstly, we observe that if we put

k=01in (6) and (7) we have
Ko = 0 (21)

Also, we can set k = n in (6) and (7) to obtain
the share market rate of return

Epa(t) = Epo(t) + K. (22)

Furthermore, if we suppose that kgo(t) = 0 then

kok(t) = kro(t) =0, k=0, 1, ..., n. (23)

This enables us to rewrite (6) in vector form

T

o) = [po(t), pr(t), .., pult)]
— Epo(t)1 + K, (24)

where the (n + 1)-th vector is 1 with every com-
ponent unity and

B=1Bos B, -y Bal". (25)
_ [ Bo
_[6}' (26)

We suppose that 7 () is the notation used for the
proportion of assets invested in asset sector
k at time t. We express 7(t) as

7(t) = [mo(t), m(t), ..., ma(®)]"  (27)

- (%6 .
where
zn:wk(t) =1. (29)
k=0

Given the disposition of assets described in the
above we can rewrite p(t)dt in (5) by using (24)
and (29) as



p(t)dt = ()" ¢(t)dt (30)
= n(t)"[Eg(t)dt + H(t)dWs(1)]
=7(t)"[Epo(t)1dt + KBdt + H(t)dW,(t)]
= [Epo(t) + w(t)T K B)dt + p(t)T dW4(t)] (31)

From (22) and (31) it follows that

Ep(t) = Epo(t) + ()" Kp. (32)
and by (19)
Lip(t)dt] = o}dt (33)
=x(®)TH@)H®) n(t)dt
=a(t)TC(t)n(t)dt (34)

which implies that

o = ()T C () (t). (35)

(29) results in there only being n degrees of
freedom in the choice of 7 (t). If we substitute (28)
and (26) in (32) we obtain

Ep(t) =Epo(t) + 7()T Kp. (36)

Next, by applying (23) and (24) we obtain

o2 =7t)TC(H)F (1), (37)

where we obtain the n x n full-rank (poisitive
definite) matrix C(t) by deleting the first row and
column of C(t) that are all zeros.

The funding system’s evolution may be described
as follows. Firstly, we represent the proposed
control function v in the form

-yl
This enables us to reduce (13) to

dX, = M()X,dt + N(tu(t)dt + G(t)dW (£)(39)

with the various terms in this stochastic differen-
tial equation being

_ [Eno(t) -Eé(t) |,
M(t)—[ . EL(t)—Eé(t)}’ (40)

N =g K (a1)
T Nt% 172 ¢ —O,
G(t) = [[ ®re O(t>] A _U;ﬂi at?u] {42)

Wr(t)
Ws(t) |, (43)
W.(t)

W(t) =

where Wg(t) is a new standard Wiener pro-
cess and Wg(t), Ws(t) and W,(t) are mutually
(stochastically) independent.

3. STOCHASTIC CONTROL OF FUNDING
SYSTEMS

We are now in a position to state the stochastic
optimal control problem for continuous time fund-
ing systems that we solve. The said problem may
be formulated as follows.

For continuous time funding systems subject to
control, how do we select the values of the contri-
bution rate and the disposition of assets per sector
at any time in some optimal way ?

In order for a Fund manager or trustee to de-
termine an optimal contribution rate and asset
allocation strategy it is imperative that a well-
defined objective function (loss function in our
case) with appropriate constraints is considered.
The choice has to be carefully made in order
to avoid ambiguous solutions to our stochastic
control problem. In this particular contribution,
we choose to determine control functions x(t, X;)
and 7(t,X;) that minimize the exponential loss
function

L(s,X,) = (44)
T
B[ 100 Kaonlt, K + 9(T, ),

where f and g are appropriate real-valued, non-
negative functions. Here we adopt the convention
that the symbol L(s,X;) denotes the value of the
loss function over the interval [s,T]. Also, k(t)
is taken to be a control variable and therefore
depends on X;. Next, we make appropriate choices
for f and g that will lead to a loss function that
is exponential. Firstly, we define f as

F(t. X, k) = e '[1/262(t) + 50(S)],  (45)

where the solvency value function, s,, is non-
negative, strictly decreasing, a > 0 is a discount
rate and e~ is a discount function reflecting
future time weighting. In (45) it is clear that the
desire for high solvency against high contribution
rates is balanced. Also, as k(t) increases so does
f(t,++) but f(s,-,-) for s < t decreases because
the higher value of k(t) increases solvency at these
times s. Furthermore, the solvency value function
Sy has the properties that

$p>0, s5,<0, s, >0. (46)



Furthermore, g in (44) is chosen to be

9(T,X7) = e “TU(S1), (47)
where L(s,X;) in (44) is factorized as

L(5,X,) = e U (S,). (48)

It is clear that we cannot choose g freely and that
the choice made in (47) is a reasonable one.

We are now in a position to state and prove
the main result related to the stochastic control
problem that we solve in this paper.

Theorem 1. (Control of Funding Systems)
Suppose that the stochastic system (39) is de-
scribed by u(t), M(t), N(t), G(t) and W(t) that
are given explicitly by (38), (40), (41), (42) and
(43), respectively, and the summation (29) holds.
Then the loss function L(s,X;) represented by
(44) is minimized by

1wsazzuwsa::[5389] (19)

— _USt ~ ~
TS0 Ug g KCT'B

where we assume that the optimal control strategy

*

u* (actually x* and 7*) exists and U is the
solution of the ordinary differential equation

alU + a(St)USt + b(St)UStSt + ’Y(USQt/UStSt)
+US, — s, =0 (50)
with Us, = dU/dS, Us,s, = d°U/dS? and

a(Se) = (Bé(t) +03) — (v + %) (51)

b(St) = —1/203 +03S; — 1/20°S%;  (52)

v =Epo(t) + E6 — Eu; (53)
o? =03 + 02 (54)
v =KX BTCTR). (55)

Proof. The result is proved by using any standard
text for stochastic control theory and stochastic
differential equations such as Fleming and Rishel
(1975), Krylov (1980), Merton (1990) and Ok-
sendal (1998).

We have another method of determining an op-
timal solution for our stochastic control prob-
lem that is directly related to a Hamilton-Jacobi-
Bellman equation from dynamic programming.

The highlights of this procedure is outlined below.
For a controlled pension fund we define the value
function

Wt X,) (k1) = (56)
E[/t L (5, Xy, k(s, Xo))ds|X].

As in the discussion preceding our main result,
e~ % is a discount function and L (s, X, £(s, X))
is a quadratic loss function of the form

L'(s, X4, k(5,X,)) = (57)
1/2n2(s) + 54(Ss) + U(Sy),

where s,(S;s) and U(Ss) are as defined earlier.
The value function, W, in (56) is also a function
of the chosen contribution strategy x(s,X;) and
7(s,Xs). In order to investigate the minimization
of W(t,Xs) we have to consider

Y(t,X,) = (58)
inf W) (5, 7) = W (X0 (6", )

under the assumption that the optimal control
strategies k* and 7* exist. From a consideration of
Fleming and Rishel (1975), Krylov (1980), Mer-
ton (1990) and Oksendal (1998) it is clear that
Y (t,X;) satisfies the Hamilton-Jacobi-Bellman
equation

0= inf (e ®'L'(t,5,X;) + Y,

(k)
+[(po + 7N X, + K — 6] Yx,
+1/2Yx x,(X2x" D7 + 03), (59)

)4
where V; = —, Yk, =

ot’
22y ?
0X,

matrix and

8Xs and YXSXS =

. Also, D is the instantaneous covariance

A= [Ala ey A'n]T where /\2 = Pi — Po, (60)

is the risk premium associated with the i-th
asset. In order to determine the optimal contribu-
tion rate k and the asset allocation = we differenti-
ate the bracketed expression. For the contribution
rate K we obtain

1

a _ _—at71’ L ai
&() =€ Ln + YXS’ Ln - Ok (61)
K*(t,X,) = L e *"Vx.). (62)

K

Furthermore, for the asset allocation m we have

aﬁ(.) = AX,Yx, + DrX%Y¥x x, =0, (63)
™
Yx ~1
™ (6,Xs) = ~ () DA (64
(%) = ~(53.7) (64)



4. CONCLUSIONS AND ONGOING
INVESTIGATIONS

In this paper we have applied stochastic optimal
control theory in order to establish how Fund sol-
vency would be affected by member contribution
and asset allocation strategies.

As regards future research on this subject we can
identify the following main concerns.

(1)

(2)

In order to assess the applicability of our
stochastic analysis we should construct suit-
able numerical examples.

We have to investigate further which optimal
control strategies exist and are appropriate
for different types of funding systems.

We would like to apply the procedure sug-
gested in this paper to other funding sys-
tems like defined contribution pension funds,
retirement annuities, provident funds and
preservation funds. Defined contribution pen-
sion funds are gaining in importance. By con-
trast with defined benefit pension plans the
benefits are no longer dependent on the final
salary but on past contribution levels and
past returns on investments. In this process
investment risk is passed from the employer
to the individual fund members.

Another possibility for further study is to
seek alternative models for the evolution of
assets and liabilities than that constituted by
(8) and (9). These may not be restricted to
only considering contribution rates and asset
allocation strategies. Other factors that are
under the control of the Fund manager and
his advisers are the method and period of
amortization, the intervaluation period, the
funding method and the valuation basis.
The choice of appropriate objective (or loss)
functions for pension funds (if at all possible)
is another current area of interest. In our con-
tribution we have made use of an exponential
loss function. Alternative objective functions
that may be considered for future use will in
all likelihood include power, quadratic func-
tions or other exponential functions. Past ex-
perience has shown that working with power
and exponential loss functions result in so-
lutions to the optimal control problem that
may be non-stationary. Also, the optimal as-
set allocation strategy derived during the use
of exponential and quadratic functions have
been found to be contrary to current practice.
These experiences lead us to believe that
future research must concentrate on finding
alternative objective functions that give rise
to stationary solutions and asset-allocation
strategies that make sense for real-world sit-
uations.

(6) An analysis which involves the optimization
of the objective function as the central theme
does not usually rely on a calculation of the
actuarial liability. However, the latter may
result in a solution of the control problem
that may be suboptimal. Therefore, future
investigations may have to take the interplay
between the actuarial liability and the opti-
mized objective function into account.

(7) Other areas of possible research may focus on
finding suitable constraints on contributions
and investments.

(8) In our contribution we have assumed that
the membership structure of the Fund is sta-
ble. In some instances there may be changes
in this structure. This would mean that we
would have to re-think an analysis that in-
volves the objective function and solvency ra-
tio (funding level) as its key components. In
this regard, problems may only be solveable
when using pre-existing actuarial techniques
in combination with optimal control meth-
ods.

(9) Some of the other open problems related to
our study arise out of the following objec-
tives that are related to Fund design. For
instance, a future study should be on how
risks that Fund providers face during the
accumulation and decumulation phases can
be optimally hedged (see Blake, 2003; Blake
and Burrows, 2001; Blake, et al., 2001 and
Blake, et al., 2003 for the case of pension
plans). Another investigation is to show that
for a continuous-time Fund containing risky
assets and risk-free assets in the presence of
randomness on the level of benefit outflow
certain Markov control strategies optimize
over the contribution rate and over the range
of possible asset allocations (see Cairns, 2000
for a continuous-time stochastic pension fund
model). Also, we could investigate how to
utilise stochastic lifestyling which takes into
account both the degree of risk aversion of
the Fund member and the correlation be-
tween the Fund member’s salary progression
and asset returns over time is more reliable
than deterministic lifestyling which involves
the gradual switch from equities to bonds
according to preset rules (compare Blake, et
al., 2003).
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