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Abstract: This paper describes the design and experimental analysis of a Variable
Structure Control (VSC) law using three reaching law strategies for a hydraulic
servo control system. For this purpose we use a nonlinear mathematical model to
develop a stable variable structure force control. The controller is designed using
a sliding mode equivalence control and is augmented by reaching law approach
to further improve the performance. Three reaching laws are developed to bring
the system states to the sliding mode surface. The feasibility of each reaching law
structure on the closed loop performance (i.e, reaching time, chattering and quality
of tracking) are experimentally evaluated and analyzed.
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1. INTRODUCTION

Hydraulic servo systems are widely used in various
industrial applications such as hydraulic manip-
ulators, precision machine tools and simulators.
Hydraulic actuators are potential choices for mod-
ern industries due to their high force to weight
ratio, fast response time and compact size. How-
ever, hydraulic systems are complex and pose non-
linearities. Control volume changes, frictions and
orifice area openings cause nonlinearities while
uncertainties stem from fluctuation in the sup-
ply pump pressure, changes in the environmental
stiffness, load fluctuation, oil compressibility and
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many more.
Force control in hydraulic actuators is particularly
a difficult problem. PID controllers do not yield a
reasonable performance for the wide range of op-
erating conditions (Alleyne et al., n.d.), (Niksefat
and Sepehri, 1999). Given the limitations of fixed-
gain controllers, several researchers considered the
use of adaptive controllers. Most of the adaptive
controllers that have been developed, including
the ones by Huang and Wang (Huang et al., 1994),
Kotzev et al. (Kotzev et al., 1994), Bobrow and
Lum (Bobrow and Lum, 1995) are based on the
linearization of nonlinear dynamics around either
the equilibrium or the desired set-point. As a
result, the lack of a global stability proof is often
a disadvantage.
Nonlinear dynamics of a hydraulic actuators have
been considered to formulate nonlinear control



laws. Sohl and Bobrow (Sohl and Bobrow, 1999)
applied a Lyapunov technique to design a nonlin-
ear control law for hydraulic servo systems. The
controller provided excellent force and position
tracking capabilities, but many practical factors
such as changes in the load, supply pressure and
flow gain were not explicitly considered. They also
used the derivatives of the desired force, which in
turn involves the piston acceleration. Hence, ei-
ther differentiation of measured piston velocity, or
an accelerometer sensor is required. Niksefat and
Sepehri (Niksefat and Sepehri, 2000) presented an
explicit force controller for a hydraulic actuator
based on a nonlinear version of Quantitative Feed-
back Theory. The results showed that the com-
pensated system is not sensitive to the variation
of parameters such as environmental stiffness or
supply pressure.
Variable Structure Control (VSC) has been stud-
ied as an alternative control law for a hydraulic
servo system (?), (Huang et al., 1994), (Lee and
Lee, 1990). It appears that most VSC laws require
the differentiability of the arbitrary load or resis-
tive torques (Huang et al., 1994), or the use of the
derivatives of piston velocity (?), (Jerouane and
Lamnabhi-Lagarrigue, 2001), which is difficult to
obtain. In addition, little attention has been given
to the dynamic characteristics of the reaching
laws. A VSC with sliding mode techniques is built
on mainly two steps: proper choice of sliding sur-
face and the choice of reaching law (sliding reach-
ability) which enforces the closed loop trajectory
to reach the manifold asymptotically. However,
such an approach does not exclude the possibil-
ity of using other functions to achieve similar
purposes (Gao and Hung, 1993). The reaching
law approach has been proposed by Gao et al.
(Gao and Hung, 1993) on 1993. The method si-
multaneously takes care of ensuring the reaching
condition, influencing the dynamic quality of the
system during the reaching phase, and providing
the means for controlling the chattering level.
In this paper we present the design and experi-
mental evaluation of a variable structure control
law for an electro hydraulic servo force control
system using three reaching law strategies. It is
our goal to accomplish these objectives:

(1) Design of a nonlinear VSC force controller for
an hydraulic system. The controller should
exhibit a good transient behavior (i.e., fast
response with acceptable overshoot) and
small steady-state error without requiring ac-
celeration feedback or derivatives of cylinder
chamber pressures.

(2) Investigate the effect of three reaching laws
on the system’s performance, specially the
closed-loop performance, i.e., reaching time,
chattering and quality of regulation.

(3) Experimental validation of the findings.

This paper is organized as follows. Section 2 de-
scribes the test rig and the modelling of the hy-
draulic system. Section 3 presents the design of
variable structure control law including the design
of the equilibrium manifold, and the control selec-
tion using various reaching law methods to drive
the state plant trajectory on this equilibrium. Sec-
tion 4 presents experimental results and analyze
the effect of the various reaching law structures
on the system performances. Finally, conclusions
are provided in Section 5.

2. DESCRIPTION OF THE TEST RIG

The experiment setup, on which all experiments
were carried out, is shown in Fig. 1. The system is
powered by a motor-driven hydraulic pump with
pressure up to 2650psi. The actuator is connected
to and controlled by a Moog 765 two-stage servo-
valve. The valve is controlled by a PC equipped
with a data acquisition board and an encoder
card. The displacement of the actuator is acquired
using a quadrature incremental encoder. Trans-
ducers mounted on the hydraulic circuit transmits
various pressures to the data acquisition board,
the board transmits control signals generated by
PC to the valve servo.

Fig. 1. The experiment setup of hydraulic system

The dynamic of the valve servo in its simple can
be given as

u = (
τ

ksp

)
dxsp

dt
+

1

ksp

xsp (1)

where xsp is the valve spool displacement, u is the
input signal, τ is the time constant, and ksp is the
servo valve gain.
In this work, we assume that the control input
u is proportional to the spool displacement, xsp

(i.e., xsp = kspu). This choice is motivated by
the fact that the servo valve response is much
faster than the rest of hydraulic servo system.
Thus the servo valve dynamics can be simplified
even further without loss of generality.
The piston motion is obtained by modulating the
oil into and out of the cylinder chambers, which
are connected to the servo valve through cylinder
ports. The piston controls the flow of the hydraulic
fluid into and out of the actuators. The flow rates



(qi, qo) are expressed as
xsp > 0 (extension)

qi = Cdwxsp
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xsp ≤ 0 (retraction)

qi = Cdwxsp
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ρ

√
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where qi and qo are the fluid flows into and out of
the valve, respectively. Cd is the orifice coefficient
of discharge, ρ is the mass density of the fluid, ps

is the pump pressure, pe is the return pressure,
and w is the area gradient that relates the spool
displacement, xsp, to the orifice area.
The differential equation for the cylinder pres-
sures, Pi and Po, can be written as (Niksefat and
Sepehri, 2000)

dPi

dt
=

β

Vi

(qi − Ai

dx

dt
) (4)

dPo

dt
=

β

Vo

(−qo + Ao

dx

dt
) (5)

where x is the piston position, β is the effective
bulk modulus of the hydraulic fluid and, Vi and
Vo are initial volumes of the cylinder chambers.
Aj(j = i, o) are piston areas.
The dynamic motion of the piston is described by

maẍ = (AiPi − AoPo) − dẋ − ke(x − xe) (6)

where ma is the total mass of piston, rod and
load, d is the viscous damping coefficient, and xe is
the location of the environment. The environment
is represented by a pure stiffness ke. The system
parameters are given in Table 1.

Table 1: Physical parameters of the hydraulic system.

System parameter Symbol Nominal Value

servo valve spool position gain ksp 12(10)−05[m/Kg]
servo valve time constant τ 35[ms]

total mass of piston rod and load ma 12[Kg]
viscous damping coefficient d 1000[Ns/m]

servo valve coefficient of discharge Cd 0.61

servo valve orifice area gradient w 2.75(10)−02[m]

piston areas Ai, Ao 6.33(10)−04[m2]

initial volume of each chamber Vi, Vo 0.33(10)−04[m3]

effective bulk modulus β 689MPa[kg/m3]

hydraulic fluid density ρ 847[kg/m3]
load spring constant ke 75[KN/m]

3. CONTROLLER DESIGN

The controller design is based on the nonlin-
ear model presented in the previous section.
The control algorithm is derived using a sliding
mode equivalence control and is complemented by
reaching law methods for driving the system to
this manifold and maintaining there.

3.1 Control Problem

Let F = AiPi − AoPo be the net force applied
on the piston, Fd be the desired force, and x =

{x, ẋ, F}T be the state vector. Given the hydraulic
system described by the nonlinear model, we
observe that with respect to the desired force, the
equilibrium state of this system is defined as

xequilibrium = {xd, 0, Fd}
T

(7)

where xd is the solution of equation (6) for
F = Fd, from the following relation

maẍd = Fd − dẋd − kexd (8)

The control problem is to find a nonlinear sliding
mode controller that asymptotically stabilizes the
equilibrium point (7).

3.2 Controller Design

The development of the VSC scheme for stabiliza-
tion of the hydraulic system consist of two phases.
The first phase is the design of an equilibrium
manifold where the hydraulic system exhibits the
desired properties in the presence of external dis-
turbances and/or model uncertainties. The second
phase is to design a scheme to drive the system to
the equilibrium manifold and maintain it there.
The design of the sliding surface is done as follows.
Consider the following sliding surface:

σ(x) = F − Fd (9)

where F = AiPi − AoPo is the hydraulic force
and Fd is the desired force.
Controller design is the second phase of the VSC
design procedure. From equations (4) and (5), the
derivatives of the active force is given by

Ḟ =
d

dt
(AiPi − AoPo)

= Ai[
β

Vi

(qi − Aiẋ)] − Ao[
β

Vo

(−qo + Aoẋ)] (10)

Assuming small piston displacements, the follow-
ing approximation is made

Vi

β
≈

Vo

β
= C (11)

Equation (10) yields

Ḟ =
1

C
{Ai[(qi − Aiẋ)] − Ao[(−qo + Aoẋ)]} (12)

Using the derivatives of the active force from
equation (12), the sliding mode equation becomes

σ̇(x) = Ḟ − Ḟd

=
1

C
{Ai[(qi − Aiẋ)] − Ao[(−qo + Aoẋ)]} − Ḟd (13)

It is known that the transient dynamics of a
VSC system consists of tow modes - a reaching

mode or nonsliding mode, and a sliding mode (Gao
and Hung, 1993). The dynamics of the equilib-
rium manifold (13) will be specified successively
by three reaching law structures: the constant



rate reaching law, the constant plus proportional
rate reaching law, and the power rate reaching
law. Next, we define the class of popularly used
reachability conditions and present analytical ex-
pressions of three reaching laws used through this
paper.

3.3 Reaching law method for VSC Design

A broad class of popularly used reachability con-
ditions can be considered as special cases of the
following definition.

Definition 1. A sliding reachability condition is
defined as

σ̇(x) = −γ(σ) (14)

where γ(σ) satisfies the following two conditions:

(1) γ(σ) is continuous if σ 6= 0, and
(2) equation (14) is asymptotically stable.

This definition is based on the stability consider-
ation of the σ − dynamics (14). In fact, if one
choose a radially Lyapunov function candidate
V (σ) = 1

2
σT σ. The derivative of V (σ) along the

trajectory of (14) is

V̇ (σ) = −(σ)T γ(σ)

which is negative and thus guarantees that the σ-
dynamics is globally asymptotically stable.
In this work, we consider three reaching law as
described by Gao el al. (Gao and Hung, 1993).
Given an initial condition σ(t0), the reaching laws,
σ̇(x ), and their reaching time, Tr, are given below:

(1) Constant reaching law

γ(σ, Kσ) = Kσsgn(σ(x)), Kσ > 0 (15)

Tr =
σ(t0)

Kσ

(16)

(2) Constant plus proportional reaching
law

γ(σ, Kσ , Kp) = Kσsgn(σ(x)) + Kpσ(x), Kσ, Kp > 0(17)

Tr =
1

Kp

Ln(
Kσ + Kp|σ(t0)|

Kσ

) (18)

(3) Power reaching law

γ(σ, Kσ , α) = Kσ |(σ(x))|
α

sgn(σ(x)), Kσ > 0, α ∈ (0, 1)(19)

Tr =
1

Kσ(1 − α)
(σ0)

(1−α)
(20)

For the three reaching law described above, the
dynamics of the equilibrium manifold are de-
scribed as

σ̇(x) = R(x)

=

{

−Kσsgn(σ(x))
−Kσsgn(σ(x)) − Kpσ(x)
−Kσ|(σ(x))|

α
sgn(σ(x))

(21)

Proposition 2. Given the nonlinear model of the
hydraulic system ( i.e., equations (1) to (6), and
the sliding surface defined by equation (9) with a
reaching law structure R(x). Then, the following
variable structure control law

u =
1

kspξ
[(A

2
i + A

2
o)ẋ + R(x)] (22)

where

ξ =







AiCdw
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(ps − pi) + AoCdw
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(p2 − pr) xsp ≥ 0,

AiCdw

√

2

ρ

√

(pi − pr) + AoCdw

√

2

ρ

√

(ps − p2) xsp < 0

ensures that the sliding motion exists on σ(x) and
the equilibrium point {xp, ẋp, F}T = {xd, ẋd, Fd}

T

is asymptotically stable.

Proof 3. Sliding mode exist if

σ(x )σ̇(x ) ≤ 0

From equations (12), the derivatives of the actu-
ator force is given by

Ḟ =
1

C
{Ai[(qi − Aiẋ)] − Ao[(−qo + Aoẋ)]} (23)

From equation (13), sliding mode condition is
expressed as

σ̇(x) = Ḟ − Ḟd

=
1

C
{Ai[(qi − Aiẋ)] − Ao[(−qo + Aoẋ)]} − Ḟd

where Fd is a constant, qi, qo is given by equation
(2, 3) and u is given by equation (22), yields (after
some calculations)

σ(x)σ̇(x) =
1

C
σ(x)[R(x)]

We now replace the term , R(x), by its value
given by equation (21), given

σ(x)σ̇(x) =
1

C
σ(x)[R(x)] (24)

=











1

C
σ(x)[−Kσsgn(σ(x))]

1

C
σ(x)[−Kσsgn(σ(x)) − Kpσ(x)]

1

C
σ(x)[−Kσ|(σ(x))|

α
sgn(σ(x)], (0 < α < 1)

By choosing Kσ and Kp as positive constants,
the reaching condition is obtained and the sliding
mode occur on σ(x) = 0.

3.4 Experimental Results

The central objective of the design is to demon-
strate the effectiveness of the proposed controller,
to compare the capabilities of different reaching
law structures, and to observe their effectivness on
the closed-loop performances. Experimental study
were conducted using the VSC law (22). The con-
troller were implemented on the experimental test



stand shown in Fig. 1. All the experiments started
at time 5s with a reference force Fref = 1000N .
The sampling frequency for the controller was
3ms.
The controller parameters (Kσ,Kp and α) were
selected such that:

(1) the controller provides a fast reaching (re-
sponse) time (Tr ≈ 0.5sec),

(2) the controller provides an acceptable over-
shoot (d < 10%), and

(3) the controller ensures a small steady state
error (ess < 10N) without chattering.

Property (3) is closely related to the steady-state
performance while the rest are mainly related to
the transient response.

3.4.1. Constant Reaching Law Fig. 2 shows ex-
perimental results of VSC law using constant
reaching law strategy (u = 1

kspξ
[(A2

i + A2

o)ẋ +

Kσsign(σ(x))]). In this figure, the response of the
hydraulic force F and the equilibrium manifold
σ(x ) are given for three values of gain Kσ. When
Kσ increases, the reaching time becomes small,
but the chattering is high due to the high gain.
The controller exhibits acceptable regulating ca-
pabilities and fast reaching time for high gain,
but chattering occurs near the equilibrium man-
ifold. On the other hand, the low gain controller
Kσ = 4 × 10−08 makes the reaching time too
long (Tr = 1.2sec) with a steady state error
(ess = 10N) because of the non-reaching of the
equilibrium manifold.
Using Kσ = 5×10−08, Fig. 3 shows the response of
the hydraulic force (F ), the discontinuous part of
the control (un = −Kσsign(σ(x))), the continu-
ous one (uc = ((A2

i +A2

o)ẋ)), and the total control
input (u). We see that the total control input,
affected by the discontinuous part, is oscillatory
and produces slight high frequency oscillations
observed near the equilibrium manifold.
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Fig. 2. Step force and equilibrium manifold re-
sponses using constant reaching law strat-
egy for different gain constants (solid line :
Kσ = 5×10−08, dash line : Kσ = 4.5×10−08,
dash-dotted line : Kσ = 4 × 10−08 )
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Fig. 3. Step force response and control compo-
nents (un, uc and u) for Kσ = 5 × 10−08

3.4.2. Constant plus Proportional Reaching Law

To study the effect of VSC law with constant
plus proportional reaching law, we added the
proportional term −Kp to the previous controller.
Experiments were for Kσ = 5×10−08 and started
at t = 5s for Fd = 1000N . The controller
parameters were selected to provide a similar force
profile as in the previous test with reaching time
Tr ≈ 0.5s.
With reference to Fig. 4, by chosen constant plus
proportional rate reaching law, the state is forced
to approach the switching manifold faster when



σ(x ) is large. Our control leads to the satisfactory
performance as shown in Fig. (4). In Fig. (5), we
can see a major reduction in chattering of the
control effort obtained by properly choosing of the
parameter Kp. The reaching time is shorter than
the results obtained with only a constant reaching
law (Tr = 1.2sec) with the same overshoot and the
control input is smooth. However, a small steady-
state error(≈ 10N) is observed.
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Fig. 4. Step force and equilibrium manifold
responses using constant plus proportional
reaching law strategy for different gain con-
stants (solid line: Kp = 0.02, dash line: Kp =
0.015, dash-dotted line: Kp = 0.001 )
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Fig. 5. Step force response and control compo-
nents (un, uc and u) for Kp = 0.02

3.4.3. Power Reaching Law The controller per-
formances is now tested using the power reach-
ing law strategy as described by equation (24).
Experiments were done for Kσ = 5 × 10−08 and
various values of α. Fig. 6 shows the responses of
the hydraulic force F and the equilibrium manifolds

,σ(x ), are given for three values of gains α. With reference

to Fig. (6), as α increases, the reaching time becomes
smaller, but the chattering is severe and the overshoot is

high. Chattering is reduced for α = 0.025, but the reaching

time is too long (Tr ≈ 1s). This reaching law increases

the reaching speed when the state is far away from the

switching manifold, but reduces the rate when the state is

near the manifold causing a long reaching time.

Fig. 7 shows the responses and the corresponding control

components (un, uc and u) for α = 0.25 and Kσ = 5 ×

10−08. We see a major reduction in the control effort,

but regulating performance is poor and exhibits a severe

chattering near the equilibrium manifold.
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Fig. 6. Step force responses using power reaching
law strategy for different gain constants (solid
line: α = 0.25, dash line: α = 0.075, dash-
dotted line : α = 0.025 )

3.4.4. Summary The controller parameters were cho-
sen in order to provide, simultaneously, a good steady state
and transient performance. From the above results one
can see that using VSC with reaching law approach, the
characteristics of the reaching mode can by controlled by

a proper design of the reaching law equation (21). Making
the parameter Kp large shortens the reaching time, but
induce a large chattering. While making Kσ small reduces

the chattering.

3.5 Conclusion

In this paper we presented the design, analysis, and exper-

imental evaluation of a VSC law for an electro-hydraulic

actuator using reaching law approach. The force controller

was developed using sliding mode approach and it breaks

down into two major phases. The first is the design of

a nonlinear sliding mode manifold (surface) where the

hydraulic system exhibits the desired properties in the

presence of external disturbances. The second phase entails

the development of a VSC law to drive the system to

the equilibrium manifold. The dynamic of the equilibrium

manifold was specified by three reaching law structure

which affects the closed-loop performance (i.e., reaching
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Fig. 7. Step force response and control compo-
nents (un, uc, and u) for α = 0.25 and Kσ =
5 × 10−08

time, chattering, overshoot, steady- state error). The pro-

posed controllers were implemented on an fully equipped
hydraulic test rig. A set of experimental tests were carried
out and the effect of each strategy was analysed. The con-
troller parameters were chosen in order to provide, simul-
taneously, a good steady-state and transient performance.
From the experimental results one can see that the char-
acteristics of the reaching mode can by controlled by a
proper design of the reaching law equation. Experiments
showed that all the controllers have the following advan-
tages: Faster response, Low overshoot, Better steady state
performance, and Chattering-free. A compromise is then
necessary to achieve these goals.
In summary, the results of this work, which present a
contribution to the application of VSC law in industrial
applications, provide insights into the potential and the
effectiveness of this technique for the stabilization of a hy-
draulic force control system. In particular, we have studied

and compared the effect of three reaching law strategies on
the hydraulic system performances.

REFERENCES

Alleyne, A., R. Liu, and H. Wright (n.d.). On
the limitation of force tracking control for
hydraulic active suspension. In: American

Control Conference. Philadelphia, PA, USA.
pp. 43–47.

Bobrow, J. E. and K. Lum (1995). Adaptive, high
bandwidth control of a hydraulic actuator. In:
Proceedings of the American Control Confer-

ence. pp. 71–75.
Gao, W. and C. J. Hung (1993). Variable struc-

ture control of nonlinear systems: A new ap-

proach. IEEE Transaction Industrial Elec-

tronics 40(1), 45–55.
Huang, C. L., C. H. Lan and Y. C. Wu (1994).

The position control of electrohydraulic ser-
vomechanism via a novel variable structure
control. Mechatronics 4(4), 369–391.

Jerouane, M. and F. Lamnabhi-Lagarrigue (2001).
A new robust sliding mode controller for a
hydraulic actuator. In: 40th IEEE Conference

on Decision and Control.
Kotzev, D. B., Cherchas and P. D. Lawrench

(1994). Performance of generalized predictive
control with on line model order determi-
nation for a hydraulic robotic manipulator.
Robotics 13, 55–64.

Lee, K. I and D. K. Lee (1990). Tracking control of
a single road hydraulic cylinder using sliding
mode. In: 29th SICE Annual Conference.

Niksefat, N. and N. Sepehri (1999). Robust force
controller design for a hydraulic actuator
based on experimental input-output data. In:
American Control Conference.

Niksefat, N. and N. Sepehri (2000). Design and ex-
perimental evaluation of a robust force con-
troller for an electro-hydraulic actuator via
quantitative feedback theory. Control Engin-

nering Practice.
Sohl, G. A. and J. E. Bobrow (1999). Experiments

and simulations on the nonlinear control of
a hydraulic servosystem. IEEE Transaction

Control System Technology 7(2), 238–247.


