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Abstract: A nonlinear model of the electric arc furnace (EAF) as developed at the
University of Pretoria (UP) is introduced. This work presents the first attempts at
applying the model to a real EAF process. Input and output data as well as initial
conditions from the plant were used to fit the model to the plant. It is concluded
that the model is able to represent, with reasonable accuracy, the behaviour of
important furnace variables such as bath temperature and carbon composition.

1. INTRODUCTION

The electric arc furnace (EAF) forms an integral
part in the manufacture of steel. In the small
steel mills, it is the preferred choice for providing
molten metal for downstream processes such as
casting; this is more so when scrap is used as
the main raw material. Its versatility lies in its
being amenable for use with various kinds of raw
materials, from scrap to DRI (direct reduced iron)
to molten metal. For carbon steels, in addition to
melting, the furnace is used for primary refining
of the molten metal. On the other hand, it is also
a highly energy intensive process.

With increasing demands for higher profitability
and stringent environmental regulations automa-
tion presents ample opportunities to achieve these
often conflicting objectives. Poor automation of
the EAF process can be attributed to the inferior
instrumentation for measurement of important
process variables. This is in turn due to the highly
corrosive nature of the environment where most of
the reliable measurement devices are costly and
not reusable.

Accurate control of temperature, yield, pressure,
gaseous discharges, and composition of alloys is
important for successful operation of the furnace.
Despite the benefits of operator experience, the
current practice of relying on operator control
fails to deliver consistency of process outputs,
timely reaction to rapidly changing variables and
maintaining outputs within tight margins. A good
model will provide an accurate representation of
process conditions; and coupled with an appro-
priate controller will allow for accurate control
of the process according to specifications. The
model can also be a partial substitute for physical
measurement of variables that are too expensive
or time consuming.

The focus of the current work is to fit an existing
EAF model to input-output data from a real
EAF process. The model was initially developed
by Bekker et al. (1999) and later expanded by
Oosthuizen et al. (2001) and then Rathaba et al.
(2003). This modelling forms part of the ongoing
project at UP for eventual control of the EAF pro-
cess. Model parameters that are characteristic of
the physics of the elements such as heat capacity
and enthalpy of reaction are readily available from



thermo-chemical tables. On the other hand, vari-
ables such as melting rates, decarburization and
bath temperature are dependent on process inputs
and operating conditions which are different from
one EAF to the next. These are governed by
adjustable parameters whose values will be unique
depending on prevailing process conditions. In-
put and output data along with initial conditions
provide valuable process information that can be
used to estimate these parameters. This forms the
basis for the current work: to use process input-
output data and initial conditions to estimate
model parameters; this model must then be able
to accurately predict process variables of interest.

A short outline of the paper is as follows: Section
2 gives a brief description of the process and
modelling. Section 3 presents a brief introduction
to parameter estimation. The resulting model and
its performance are discussed in section 4. Some
final remarks are given in the conclusion.

2. MODEL AND PROCESS DESCRIPTION

The EAF is the primary site for melting of scrap,
slag formers and DRI. A tap begins with the
charging of raw materials into the furnace, the
charge is heated to a complete melt which is then
refined to a desired composition and temperature;
at the end of the tap the steel is poured into a
ladle where it will undergo further treatment. In
a hot heel practice, some hot metal is left from a
previous tap; this provides a pool of hot metal that
expedites melting by increasing the rate of heat
transfer to the solid scrap. Most of the heat energy
is derived from the arc, formed by a three phase
electrical supply conducted by three graphite elec-
trodes; these are lowered into the vicinity of the
scrap where current flow among the electrodes and
the scrap creates a high temperature plasma flow
(Billings et al., 1979). A supplementary energy
source is the oxyfuel subsystem that plays two
roles: to supply high efficiency heat energy by
combustion of fuel in the vicinity of the scrap and,
to inject oxygen into the bath for refining. Slag, a
layer above the molten bath serves as a medium
for removal of impurities from the bath. It also
improves the energy efficiency of the furnace by
preventing heat loss from the bath surface and
by confining the high energy arc radiation near
the bath. For a detailed process description the
reader is referred to Bekker et al. (1999), Morales
et al. (2001) and Taylor (1985). Figure 1 shows a
schematic diagram of the furnace.

Fig. 1. Schematic of EAF process with impor-
tant process variables. The oxyfuel lances
inject both oxygen and fuel gas simultane-
ously while during refining, only a supersonic
stream of oxygen is injected. A graphite lance
is used to control the thickness of the slag by
foaming. x1 and x2 are the solid and liquid
steel; x5 and x6 the solid and liquid slag; x3

and x4 are the bath carbon and silicon.

In general, the furnace is modelled as

ẋ = f(x, u, θ, t)

y = h(x, θ) (1)

x(0) = x0

where the state vector x ∈ <17; the input vector
u ∈ <7; the parameter vector θ ∈ <5; the carbon
and temperature outputs y ∈ <2; and the initial
conditions x0.

The model essentially represents the mass and
energy balance of the furnace. In this work only
the mass of bath carbon will be considered. The
rate of change of carbon in the bath is given by

ẋ3 = kdC(XC −Xeq
C ), (2)

where XC is the mass fraction of carbon in the
bath and Xeq

C is its equilibrium concentration in
the bath. It is assumed that equilibrium is estab-
lished across the slag-metal interface between the
carbon in the bath and the FeO in the slag. From
(2) the relationship is that the rate of change of
carbon is a function of its current and equilibrium
concentrations. It is important to note that XC

and Xeq
C are dependent on bath mass, silicon and

carbon concentrations, slag mass, and SiO2 and
FeO which are both dissolved in the slag; all
change over time. Decarburization is proportional
to the decarburization rate constant kdC .

The rate of change of bath temperature is given
by
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The numerator sums all the energy sources and
sinks (in [kW]); PT is the net chemical energy in-
put, d

ARC
is the power input from the arc and k

V T

controls the rate of heat loss from the furnace to
its environment (at T = Tair). The denominator
sums the heat capacities of, respectively, molten
steel (x2), bath carbon (x3) and silicon (x4), CaO
(x6), FeO (x7) and SiO2 (x8). Parameters of in-
terest are η

ARC
, k

V T
and η

F eO
, the efficiency of

bath oxidation. It contributes to chemical energy
as p2 = 2ηFeO∆HFeO/MO2v1, where ∆HFeO is
the enthalpy of formation of FeO, v1 and MO2 are
the rate of injection and molar mass of oxygen.
The temperature is also a function of the oxy-
fuel energy input whose efficiency is controlled by
η

OXF
(Rathaba et al., 2003).

3. PARAMETER ESTIMATION

For parameter estimation the popular penalty
or cost function minimization procedure will be
employed. Inputs and initial conditions measured
from the process are applied to the model and
the parameters are chosen such that the model
output closely follows the measured plant output.
That is, given the measured initial conditions,
inputs and outputs (x0m, um and ym), choose the
parameter θ from the set D to minimize the error
ε(t) = ym(t)−y(t), where y(t) is the model output.
Following notation similar to that in Ljung (1999),
the problem is then

θ̂ =
arg min

θ∈D
VN (θ) (4)

where

VN (θ) =
1
N

N∑
n=1

l(ε(θ))

=
1
N

N∑
n=1

l(ym,n(t)− yn(t, θ)), (5)

l(·) is a scalar-valued function that is applied
to the error ε(θ). A common choice is l(ε) =
1
2ε2, the least squares error. However, the least
squares estimate suffers from the drawback that
large errors are given more weight such that one
large error could be allowed to dominate the
resulting estimate. This is severely detrimental
when outliers or bad data are present in the
measurements - the results could become useless.
An alternative is l(ε) = 1

2 |ε|R, where R is chosen

as R = 1 (Bishop, 1995). The resulting output
will be the median of the data points instead of
the mean which can be dominated by large-error
data points.

Many approaches exist for solving (4) and some
are built into software packages such as Matlab
and Maple. For smooth error functions (VN (θ))
gradient-based methods can be successfully em-
ployed to determine θ. With this approach an
iterative update of θ is carried out in the direction
of steepest descent of the error function, i.e.

θτ+1 = θτ − η∇VN |θτ (6)

where ∇VN |θτ is the gradient of VN evaluated
at θτ in the iteration step τ ; η is the learning
rate. The iteration continues until ∇VN = 0
or some other stopping criterion is satisfied. A
detailed discussion of steepest descent and other
optimization methods is given in (Bishop, 1995).

4. RESULTS

The EAF process can be separated into two dis-
tinct stages: meltdown and refining. In each stage
the dynamics of certain variables are most pro-
nounced and so too is the effect of the correspond-
ing parameters on the process. Some parameters
whose values affect the meltdown stage have little
relevance during refining, and vice versa. This
simplifies the parameter estimation in that the
problem can be separated into two sub-problems -
parameter estimation during meltdown and then
refining - each with fewer parameters.

The data used in the current work was obtained
from a 50 MVA furnace with an 80 ton capacity.
The furnace uses 3 main oxyfuel lances and 3
graphite injection lances. A hot heel practice is
followed with a tap to tap time of 57 minutes
(Holmes and Memoli, 2001). In the model calcula-
tions the hot heel is assumed to be constant at 10
ton and 1550◦C. All the necessary raw materials
are changed into the furnace using two to three
baskets per tap. In the results that follow data
from 10 taps was used for fitting the model (test
data) and 5 were used for validation.

4.1 Meltdown stage

Parameters of interest during meltdown are the
heat transfer coefficients, and the transfer efficien-
cies of electrical and oxyfuel power input. These
are responsible for the changes in the mass of
steel, slag and most importantly, bath and slag
temperature. Parameters for removal (rate con-
stants) of silicon and carbon from the bath play
a role during meltdown but their values cannot



be practically verified due to high measurement
uncertainties during this stage.

The efficiency parameters ηARC , ηOXF , ηF eO (ef-
ficiency of bath oxidation) have a primary effect
on bath temperature and indirectly influence the
melting rate of the charge materials. ktherea1 and
ktherea5 are responsible for the melting rates of
the steel and slag, respectively.

No direct method exists for monitoring the
progress of melting in the furnace - a measurement
of solid and liquid mass phases in the furnace is
impractical. At best an educated guess (based on
operator experience) is made about when a com-
plete melt has been reached; this is based on visual
inspection or noise patterns emanating from the
furnace. To determine ktherea1 and ktherea5 it is
sufficient to ensure that the model predicts a com-
plete melt at or before some t = t1 (when a flat
bath condition is suspected), i.e. mscrap ≈ 0 and
msolidslag ≈ 0 for all t ≤ t1. The above parameters
have a limited effect on the terminal temperature
T (t1); they are the first to be estimated, then fixed
for all subsequent estimation.

Once the melting rates are fixed, the parame-
ters θ = [ηARC , ηOXF , ηF eO , kV T ] are determined.
Successful adjustment of these parameters will
deliver a model for which T (θ, t1) ≈ Tm(t1) over
all taps; t1 is also the time at which the first
measurement of temperature Tm(t1) is taken and
T (θ, t1) is the temperature as reported by the
model at the same time. As discussed in section 3
fitting is carried out by minimization of the error
function VN (θ) = 1

N

∑N
n=1 l(Tn(t1) − Tm,n(t1)),

where N is the total number of taps. The results
are given in table 1, the resulting parameter values
are θ = [0.370, 0.313, 0.349, 1.059].

Table 1. Results of flat bath tempera-
ture fit.

Test data Validation data

Average error 33.05 35.07
Std dev 19.02 21.90
Min error 0.17 7.81
Max error 68.67 64.76

4.2 Refining stage

Refining is the final stage in the EAF process.
Here properties of the molten steel are modified
according to requirements of the downstream pro-
cesses, in the current case the secondary metal-
lurgy in the ladle furnace, and then the contin-
uous caster. Once a laboratory analysis of the
bath chemistry is obtained, controlled removal of
carbon (and other impurities) commences. At the
same time the bath temperature is measured using
a disposable thermocouple. With this information
available controlled adjustment of temperature
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Fig. 2. Model temperature output compared with
measured plant outputs (denoted by ◦) for
4 taps. Taps 1 and 3 have a smaller error
(approximately 25 ◦C) compared to 2 which
is at maximum error, while 4 is at the smallest
(see table 1). The troughs in the plots corre-
spond to periods when charging takes place.
For tap 4 the error is negligible despite a large
disturbance (an idle time t = [8, 19] minutes)
experienced during the tap.

can commence. (Both temperature and carbon
composition can only be practically adjusted in
one direction: carbon can only undergo a con-
trolled decrease and temperature a controlled in-
crease. On the other hand, decreasing the tem-
perature requires making material additions or
leaving the furnace idle to allow the heat losses
to cool the bath. The former can also be em-
ployed to increase the carbon composition. Both
approaches are time consuming and will have a
negative impact on furnace productivity; they are
best avoided for all practical purposes.)

An analysis of the bath chemistry and a reading
of temperature are obtained simultaneously at flat
bath t = t1; these measurements will provide ini-
tial conditions for the model at refining. Approxi-
mately 2 to 10 minutes later at t = t2 - depending
on operating conditions - another measurement of
temperature and carbon composition is obtained.
Given the above information, the problem then
becomes: given the initial conditions x(t1) and
inputs, the model should be able to predict the
terminal point ym(t2) as closely as possible.

The initial conditions in (1) x(t1) = x1 are
obtained from plant operating conditions. The
model output is y = h(x) = [temperature, carbon]T .
The optimization problem for refining is then:

θ̂ =
arg min

θ∈D
VN (θ)

=
arg min

θ∈D

1
N

N∑
n=1

l(ym,n(t2)− yn(t2, θ)), (7)



ym,n(t2) is the measured output at t = t2 for tap
n = 1, . . . , N and yn(t2) is the corresponding out-
put as obtained by the model. That is, minimize
the model prediction error over a total of N taps
by appropriate choice of θ = [η

ARC
, η

F eO
, kdC ].

For the current problem the model fit was carried
out using 10 test taps and 5 validation taps.
The results are given in tables 2 and 3. The
error data refers to the absolute error between
the measured and model output per tap. Some
model outputs for prediction of temperature and
carbon are shown in figures 3 and 4; for clarity
only outputs for 4 taps are shown.

Table 2. Results for refining tempera-
ture fit.

Test data Validation data

Average error [ ◦C] 13.23 17.98
Std dev [◦C] 11.76 13.49
Min error [◦C] 0.02 3.19
Max error [◦C] 33.57 39.13
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Fig. 3. Model temperature output in relation to
measured plant output (denoted by ◦) for 4
taps. The plot is shown relative to the first
measurement time t = t1.

Table 3. Results for refining carbon fit.

Test data Validation data

Average error [kg] 3.74 6.05
Std dev [kg] 4.62 7.35
Min error [kg] 0.038 0.16
Max error [kg] 15.0 20.02

The first report of the bath chemistry (along with
the bath carbon content) is dependent on operator
intervention. There is a finite delay between the
time that a bath sample is obtained and when it
is actually analyzed in the laboratory: this can
vary from 1 to 3 minutes. During the delay, the
bath carbon composition will decrease; therefore,
the analysis will report a slightly higher reading
at the time the data is logged. Offline use of this
data will be prone to some error since this delay
cannot be taken into account precisely: it can only
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Fig. 4. Model carbon output in relation to mea-
sured plant carbon (denoted by ◦) for 4 taps.

be estimated to lie in the range specified above.
It is important to note that this will introduce
error into the estimates, particularly for short
estimation periods t2 − t1 ∈ [1, 3] [minutes]. This
may explain the performance results of table 3.

Fitting for refining temperature is also prone to
a certain degree of error. The temperature of the
bath is strongly influenced by slag foaming - it
depends on slag depth. While the model does
account for slag depth as a function of graphite
injection, the decrease in slag depth by deslag-
ging is neither reliably quantifiable nor practically
measured. Deslagging removes excess slag in the
bath so that a bath sample or temperature can be
obtained. It is carried out by tilting the furnace
by 2◦ to 5◦ (from vertical) to allow the slag to flow
out. During normal operation, the furnace will be
deslagged at least once during refining, thus intro-
ducing a significant unmeasured disturbance into
the process, especially on the bath temperature.

5. CONCLUSION

Model fitting for the meltdown stage shows a bet-
ter performance compared to the fitting of both
carbon and temperature at refining. This is possi-
bly due to the long periods available for meltdown
where the effect of disturbances is smoothed out
over time. Refining is less immune: the slightest
unmodelled disturbance will have a marked ef-
fect on the process since it is being controlled
within tight margins and over short periods of
time. There is little tolerance for error in the raw
measurements being taken as well as the times at
which they are reported.

The results presented in the current work demon-
strate the potential of the EAF model as a predic-
tor of the actual process. Although not conclusive,
they are encouraging, and form a foundation for



further work, particularly in modifying the model
to accommodate effects such as deslagging.

Work is currently underway for the design of
experiments from which more reliable data will
be obtained. With this in place, a critical eval-
uation of the model can be carried out. This, it
is expected, will help improve some of the results
obtained so far and will inform any new modifica-
tions that may be necessary.
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