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Abstract: Process monitoring, fault detection and diagnosis and supervisory control, 
among many other control methods, are based on statistical pattern recognition, where the 
objective is to eliminate assignable causes in process behaviour. However, it has been 
shown that the majority of process and manufacturing quality problems are attributable to 
common causes. Historical data collected under predictable and stable operating 
conditions contain information that can be used to reduce process variability. In this paper 
we propose the use of support vector machines (SVMs) in the identification of informa-
tive patterns from a process under statistical control. SVMs possess a number of advan-
tages over other methods, such as the capability to describe nonlinear functions, to derive 
sparse descriptions of solution sets from training set patterns, as well as the ability to deal 
with noisy data. A symbolic classifier is then used to search and formulate process 
improvement opportunities by partitioning the decision space by using the previously 
identified support vectors.  
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1. INTRODUCTION 
 
Technological advancements have seen an increase 
in data collection and processing activities in 
industrial processing plants. State-of-the-art 
industrial plants routinely measure a large number of 
variables using online sensors. Analysis of historical 
operating data can uncover potentially useful 
information to provide insight into and monitor 
process behaviour. While extraction of useful 
information is an ongoing research problem, 
statistical pattern recognition has inspired a number 
of applications now widely used in process 
monitoring, fault detection and diagnosis, 
supervisory control, etc. (Kresta et al., 1991; Raich 
and Çinar, 1996). These methods monitor process 
trends to detect abnormal events, provide 
troubleshooting guidelines when a similar problem 
recurs and, if possible, to eliminate the causes. 
Unfortunately, these approaches are aimed at 
restricting the process variability in a bounded region 
of predictable and stable operation. In other words, 
variability attributable to common and sustained 
causes is considered unavoidable.  
 
However, studies have indicated that the majority of 
process and manufacturing quality problems arise 
from common causes (Deming, 1989). Hence, 
process improvements with significant impacts can 
be realised by complementing statistical process 
control (SPC) and related methods with efforts 
focussed on the reduced dispersion of performance 
or quality variables.  
 

In this paper, we discuss an online support vector-
based framework for formulation of process 
improvement opportunities using operating data 
collected from a process under a statistical control. 
Pivotal data points containing all the information 
required to separate objects belonging to different 
classes are identified using supports vector machines. 
Subsequently, a symbolic and modularised 
description of the decision boundaries is obtained by 
induction of decision trees using the pivotal data 
points, called support vectors. Suggestions for 
process improvement are extracted for verification, 
validation, and implementation by the operator or 
process engineer. 
 
In the following, an overview of the general learning 
problem is presented, from which the algorithm for 
support vector machine learning is formulated. The 
use of classification decision trees, which provide the 
symbolic module in the methodology, is briefly 
described. A simulated continuous stirred tank 
reactor (CSTR) is then used to discuss and illustrate 
the functionality and features of the system.  
 
 

2. EMPIRICAL LEARNING  
 

Statistical pattern recognition is one of three specific 
instances of the general learning problem and forms 
the core part of the methodology (Vapnik, 1998). An 
understanding of the basic learning problem is 
therefore important. 
 
 



 

2.1 The General Learning Problem 
 
In the general learning problem, the idea is to learn a 
function from which the correct output can be 
computed given input data. A particular approach in 
solving this problem is supervised learning, which 
involves the use of known input/output pairs of 
vectors to estimate the function. Thus, for a two-class 
classification problem, given independent and 
identically distributed input-output training data pairs  
( , ), 1,..., ;i iy i N=x  where d∈ℜx  and { 1, 1},y ∈ − +  a 
function f is sought such that the following holds: 
 
 ( ), 1,..., .i iy f i N= =x      (1) 
 
Based on the available information, an estimate of f 
is obtained by using induction. Conventional 
approaches, e.g. least-squares minimisation and 
maximum-likelihood, find such an estimate using the 
empirical risk minimisation (ERM) principle, which 
finds a consistent hypothesis by minimizing the 
training error.  
 
Another alternative and more principled approach, 
structural risk minimisation (SRM), seeks a 
hypothesis that minimises the error of misclassifying 
yet-to-be-seen objects (Burges, 1997; Cristianini and 
Shawe-Taylor, 2000). In other words, the 
generalisation capacity of the classifier is maximised. 
Support Vector Machines (SVMs) employ the SRM 
principle, which has been shown to be superior to the 
ERM principle (Gunn, et al., 1997).  
 
 
2.2 Classification with  SVMs 
 
Basic Theoretical Framework. The basic idea in 
SVM classification is to learn the optimal decision 
boundary or separating hyperplane in a high 
dimensional feature space using simple linear 
machines. If the separating hyperplane is defined by 
a weight parameter (w) and bias (b), then the 
hyperplane that minimises the solution of the 
problem, is found by constrained minimisation of an 
objective function ϕ(w), as follows 
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A Lagrangian formulation of (2) yields the primal 
problem: 
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where 0iα ≥  are the Lagrange  multipliers. Using 
Lagrangian duality, the primal problem in (2) can be 
transformed into an equivalent but easier to solve 
dual problem:     
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The solution of equations (2), (3), and (4) is given by 
among other Burges (1997) and Cristianini and 
Shawe-Taylor (2000): 
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The weight vector is then given by the expression 
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hyperplane. The bias b is found from the primal 
Karush-Kuhn-Tucker conditions: 
 
 ( ), 1 0, 1,...,i i iy b i Nα  + − = = w x  (6) 
 
Also, from (6) it can be seen that the corresponding 
Lagrangian multipliers exceed zero ( 0iα > ), only 
for inputs which lie closest to the hyperplane, while 
the rest of the multipliers are zero. Hence, in the 
description of the weight vector solution, only these 
Lagrangian multipliers are involved. Therefore, 
although the entire training set is used in the 
formulation and optimisation of the problem, the 
solution is found in terms of a few informative 
patterns only, also referred to as support vectors. The 
rest are degenerate and their omission in the 
formulation does not affect the solution. 
 
Noisy Data and Complex Nonlinear Functions. Real 
data are invariably noisy, with decision functions 
appropriately defined by complex nonlinear 
functions. The SVM formulation as presented above 
cannot handle these data sets. Fortunately, the basic 
formulation described above can be extended. In 
particular, Cortes and Vapnik (1995) introduced an 

error term 
1

N

i
i

C ξ
=
∑  in the formulation of equation (2), 

where C is a regularisation constant and iξ  a slack 
variable: 
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The solution of the optimisation problem is then a 
trade-off between maximisation of the margin term 

( )ϕ w  and level of allowable misclassification errors. 
 
To allow for both linear models and nonlinear 
decisions, we map the input into a higher 
dimensional feature space F and formulate a linear 
algorithm in the new space: 
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Kernel mapping (equation 9),  
 
 ( , ) ( ), ( )K φ φ=x z x z  (9) 

 
sidesteps the potential computational complexity 
introduced by working in higher dimensions 
(Cristianini and Shawe-Taylor, 2000). Additionally, 
use of kernels negates the need to explicitly know the 
underlying feature map. However, a function must 
satisfy certain properties to ensure it is a kernel and 
construction of kernels is a separate issue that will 
not be discussed here. In all the experiments 
described below, we used standard Gaussian kernels, 
used successfully in many applications.  
 
In summary, SVMs are learning machines that find a 
linear decision boundary in an implicitly defined 
feature space, corresponding to a nonlinear decision 
boundary in input space. The solution space is 
defined in terms of a sparse subset of the training 
data with good generalisation properties.  
 
 
2.3 Classification Decision Trees 
 
Although powerful techniques now exist that learn 
classification tasks, most are not amenable to an 
explicit description the decision space. An important 
feature of self-contained decision support systems is 
the capability to extract descriptive knowledge from 
data and expressing these decision rules in a 
comprehensible language.  
 
Decision trees are top-down symbolic classifiers that 
express classification rules as a modularised 
description of the input space. A tree may be a 
terminal node or leaf associated with a single class, 
or a test node with a disjoint set of possible 
outcomes. Each outcome in turn is associated with a 
subsidiary tree, while the tests are designed to reduce 
an otherwise heterogeneous set of objects. The 
classification or decision rules are expressed as 
complexes or conjunctions of the operating 
conditions (input space). Thus the classification rules 
are represented in an understandable and concise 
language, similar to the way operators describe 
physical systems, such as processing plants. Decision 
trees are also flexible and can deal with categorical, 
discrete, and continuous values in a natural way.  
 
These properties in particular are used to integrate a 
symbolic reasoning component into the proposed 
framework for process improvement, as discussed 
later. The theory and implementation of 
classification decision trees are well-established and 
the reader is referred to the literature such as Quinlan 
(1987) and Breiman et al. (1993).                                                                                                
  
 

3. DISCOVERING PROCESS IMPROVEMENT 
OPPORTUNITIES  
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Fig. 1. Decision boundaries induced using a support 

vector classifier with Gaussian kernels. 
 
As mentioned before in section 1, it is not enough to 
accept process behaviour under statistical control. 
Current performance levels need to be challenged 
continuously to reduce dispersion of quality 
variables. Fig. 1 illustrates the basic idea for the 
search and formulation of improvement opportunities 
for a process under statistical control. The process 
inputs consist of the two variables, viz. temperature 
and concentration of reactant Ai, and in this case 
class B is the desirable operating range. Data points 
that lie close to class separating hyperplanes provide 
critical information useful for identifying 
improvement opportunities. The challenge is to 
isolate these patterns for subsequent extraction of 
classification rules using a symbolic classifier.  
 
Saraiva and Stephanopoulos (1992) have proposed 
the nonparametric identification of these pivotal 
patterns by using Tomek links.  However, Tomek 
links are piecewise linear classifiers and may not be 
appropriate for nonlinear decision boundaries. 
Moreover, for sparse data it is not always guaranteed 
that pairs that form Tomek links remain so in higher 
dimensions. Support vectors avoid these potential 
limitations, apart from their other advantages.  
 
With SVMs, the number of support vectors can be 
controlled, outlier detected and the data filtered, in 
addition to the advantages mentioned earlier. Fig. 2 
gives an overview of the complete methodology. The 
framework closely resembles that previously 
proposed by Saraiva and Stephanopoulos (1992), 
except for the identification of points closest to the 
separating  hyperplanes. The use of support vector 
classifiers also makes for interesting differences, 
which we discuss in a tutorial form in the following. 
First, it is necessary to describe the system used in 
the illustrations. 
 
Problem Formulation. Consider a first-order 
irreversible reaction ( )A B→  occurring in a CSTR 
whose reaction kinetics are governed by an 
Arrhenius relationship. The reactor volume and 
volumetric flow rate are maintained at constant 
values, while the feed concentration of reactant A and 
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Fig 2: Search and formulation of process 

improvement opportunities. The pattern recog-
nition scheme (elements with solid lined boxes) 
is central in the methodology. 

 
 
the reactor temperature were generated according to 
normal probability distribution functions, as shown 
in Table 1 below. As Fig. 3 shows, the process can 
safely be assumed to be under statistical control. 
 
Table 1 Parameter Values for the CSTR Monte Carlo 

Simulator 
Variable Mean Std. deviation 
[A]i (mol/dm3) 0.8 0.1 
T (K) 300 3.5 
 
The two-variable restriction is only to allow for 
visualisation of the decision hyperplanes. The objects 
or examples are classified into one of three classes 
using distribution statistics of the process 
performance variable, [B]: Values more than one 
standard deviation lower than the mean of [B] are 
labelled class A; values falling within one standard 
deviation as class B, and values more than one 
standard deviation greater than the mean as class C. 
Fig. 4a shows a typical partitioning of the input space 
for 750 data points. 
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Fig 3. Data description showing SPC limits used for 

abnormal event monitoring.  
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Fig 4: (a) Problem formulation using distribution 

statistics from historical operating data. (b) 
Decision boundaries induced using a support 
vector classifier with a Gaussian kernel with 
parameter γ = 0.5 and C = 10. 

 
 
Support Vector Classification. The SVM approach 
outlined above is subsequently used to identify the 
support vectors lying in the proximity of the 
separating hyperplanes for the specified parameters, 
as indicated in Fig. 4(b). The support vectors act as 
input to the symbolic representation, where a search 
and formulation of improvement opportunities is 
done. 
 
Formulating Improvement Opportunities.  
Symbolic classification permits the partitioning of 
the input space into hyper-rectangular zones. A 
search through these zones allows for adjusting 
process variables to lie within ranges, which mostly 
result in desirable process performance or product 
quality. Based on the information in the support 
vectors identified earlier, a typical delineation of the 
input space is shown in Fig. 5. For example, if the 
indicated feed concentration of reactant A is in the 
range of [0.73, 0.97] mol/dm3, then restricting the 
reactor temperature to the range 295K ≤ T ≤ 300K 
will reduce the dispersion of [B] values. The potency 
of the approach is especially important for high 
dimensional processes commonly encountered on 
process plants where such decisions may not be 
possible to visualise as in this 2D case.  
 
Detection and removal of outliers. Sensor failures 
and other operational problems frequently result in 
incorrect measurement records. An essential 
characteristic of automated pattern-based systems is 
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Fig 5. Formulation of Improvement Opportunities. 
 
 
reliability and robustness to a few inconsistent data. 
The formulation of the SVM results in misclassified 
points or errors being included in the definition of 
the decision function. To use these errors in 
determining hyperrectangular zones unnecessarily 
complicates the decision process. Thus, the 
automated system preferably has to be able to 
identify the occurrence of a mismatch in a 
measurement.  
 
The values of the slack variables in the solution of 
the soft-margin SVM formulation (6) can be used to 
identify and remove potential outliers. Patterns with 

1iξ ≤  lie within the margin and are correctly 
classified and therefore convey important 
information on the decision boundary. However, 
patterns with 1 2iξ< <  are incorrectly classified, 

but still within the margin. Patterns with 2iξ >  are 
totally embedded in a different class and are 
therefore immediate targets for elimination. The 
threshold value of iξ  indicating the removal of 
patterns can be decided by the process experts 
familiar with the dynamics of the operation, 
providing an additional control on the decision 
support system (choice of kernel, kernel parameter, 
and regularisation constant being the others). For the 
purposes of this application, we consider such an 
approach more appropriate than just using the iα  
values, a property which is often used.  
 
Adaptive evolution of the memory of the support 
vectors. The nature of empirical learning is such that 
as new data becomes available over time, better 
estimates of the decision function are obtained. An 
online system must be able to learn continuously as 
data are collected, and make adjustments if 
necessary. These adjustments improve the 
smoothness of the current decision function or shift 
the decision function to a different decision space. In 
particular, a change in process parameters may shift 
the decision hyperplanes. In this case, it is important 
for the system to note and, therefore, exploit the 
information in the incoming data, rather than throw it 
away as outliers. In the proposed scheme, an efficient 
way to detect such changes is implemented using 

information on the update rate of the hyperplanes and 
the growth rate of the memory of support vectors.  
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Fig 6: (a)-(f) Snapshots of the online evolution of 
support vectors at the indicated times. (g) 
Evolution of the size of the support vector 
memory. (h) Support vector classifier 
performance check using a test set of 200 taken 
from the “future”. 

 
 
3.2 Identification of Online Process Improvement 
Opportunities for a Simulated CSTR system.  
 
To demonstrate the dynamic properties of the online 
decision support system for process improvement, 
we used data generated from the simulated CSTR 
described earlier. Additionally, a process shift was 
induced after 10 000 time units by changing the 
activation energy constant to 101.43 kJ/mol. This 
change shifts the decision boundaries upward.  
 
Fig. 6(a)-(f) show support vectors at different times. 
The first 40 points were used in initializing the 
support vector classifier. The size of the support 
vector set increases rapidly initially, but gradually 
stabilises after approximately 200 time units. 
Interestingly, for most of the time all the information 
in the entire data set (before process drift) is captured 
by approximately 80 data points. As the rate of 
misclassification and the number of support vectors 
abruptly increase (as measured using an independent 
test set) after 10 000 time units, it is clear that the 
present support vector classifier is no longer 
consistent. To capture only relevant information, the 
learning methodology has to unlearn past 
information, retaining information within a specified 
time window. This reconfiguration takes a few steps, 
before stabilisation is achieved. Although in this 



 

example final stabilisation occurs with more or less 
the same number of support vectors as before, this is 
an exception rather the rule. The number of support 
vectors is influenced by the form of the nonlinear 
function describing the hyperplane in the input space, 
which in this case happens to be similar for the 
different process parameters.  
The rapid identification of process shifts has major 
implications on real plants, where the cost of 
nonconforming product could be high and recycle or 
rework expensive, such as in the pharmaceutical 
industries. 
 

 
4. CONCLUSIONS 

 
An online system for the formulation of process 
improvement opportunities was proposed, which 
uses parametric support vector classifiers in the 
selection of pivotal data points. Unlike traditional 
parametric methods, support vector classifiers use a 
bias from statistical learning theory, which 
maximises the generalisation capacity of the learning 
machine. Furthermore, the decision function is 
expressed in terms of a subset of the training points, 
thus inducing attractive nonparametric 
characteristics. The online decision support system 
for process improvement uses support vectors, 
appropriately screened for outliers, in the inductive 
learning of decision trees. Eventually, a modularised 
description of the input space is obtained that can be 
used in searching and formulating process 
improvement opportunities. These characteristics 
were illustrated using a simulated CSTR system in 
which a first-order irreversible reaction occurred.  
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