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Abstract: In this paper the methodology of biplots is introduced as a means for monitoring 
the behaviour of process systems. This sophisticated methodology allows for the 
projection of high-dimensional data to a low-dimensional subspace that can be visualised 
by a human operator. The projections are highly graphical in nature, and rich in 
information regarding variation in process variables, correlations among these variables, 
as well as class separation, taking into account the multivariate character of the data. 
Moreover, as is shown by way of two case studies, process disturbances can be visualised 
and explored quantitatively by superimposing alpha-bags on biplots.  
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1. INTRODUCTION 
 
Process data are used extensively in modern 
industrial environments for monitoring product 
quality, control and optimization. Large volumes of 
data are routinely collected and stored on many 
plants and in order to exploit the data to get a better 
understanding of the behaviour of the process, it is 
important to identify the salient features underlying 
the data. By reducing the dimensionality of the 
problem, the engineer is able to summarize the 
information captured in a large number of variables 
by a smaller number of latent variables. Principal 
component analysis (PCA) is by far the most 
important technique used for this purpose, and is 
widely supported by statistical software. 

As is indicated in this paper, PCA can be extended 
with modern biplot methodology by providing a 
single graph for displaying the variation in  
multidimensional observations, together with 
information on all variables concerned. Canonical 
variate analysis (CVA) biplots on the other hand, are 
ideally suited for optimally separating classes of 
observations. Biplots provide an infrastructure for 
implementing many novel ideas in monitoring 
industrial plant processes and allows for non-linear 
relationships among process variables.  
 

 
2. BIPLOT METHODOLOGY  

 

A biplot is a graphical display consisting of a vector 
for each row and a vector for each column of a 
matrix of rank two (Gabriel, 1971). The elements of 
the matrix are represented by the inner products of 
the vectors corresponding to their rows and columns. 
Since any matrix of rank k > 2 can be approximated 

by a matrix of rank two, a biplot can be constructed 
for all matrices by considering its rank two 
approximation. Although the traditional Gabriel 
biplot is widely applied as a graphical aid in practice, 
biplots can also be viewed as multivariate analogues 
of scatterplots that are easy to interpret (Gower, 
1995; Gower and Hand, 1996). In regarding the 
biplot as a multivariate extension of an ordinary 
scatterplot the focus is on representing interpoint 
distances. Since scatterplots have the merit of being 
familiar, requiring very little formal training to 
interpret, this biplot is accessible to non-statistical 
audiences. The multidimensional observations are 
represented by points in a two-dimensional display 
while variables are represented as biplot axes – for 
each variable a separate axis.  Furthermore, these 
(non-perpendicular) axes are calibrated in the 
original scales of measurement so as to be used in 
much the same way as the two perpendicular axes of 
a scatterplot. 

Mathematically, the process of finding the 
coordinates of the original points in the PCA biplot 
space amounts to performing a singular value 
decomposition of the data matrix consisting of n 
observations on p variables.  However, these axes are 
not shown but form the scaffolding for constructing 
the biplot. The relationships between the scaffolding 
and the original variables are termed interpolation 
and prediction (cf. Gower & Hand, 1996). For a 
given or a new observation, interpolation is the 
process of finding its representation in the biplot 
space.  Prediction, on the other hand, is inferring the 
values of the original variables in terms of the biplot 
scaffolding.  Thus, what is shown in a PCA biplot are 
the observations and a set of axes, calibrated in the 
original units, representing the variables.  It can be 
shown that two different sets of axes are needed: one 



set for interpolation and another for prediction. Since 
it is natural to use axes for inferring values of the 
observations for the different variables, only 
prediction axes will be fitted to biplots shown here.  
Interpolation is usually performed by a suitable 
computer programme. 

CVA aims to find the linear combination of the 
predictor or discriminatory variables that maximises 
the ratio of the between groups to within groups 
variance.  This process amounts to transforming the 
original means to a new set of means, known as 
canonical means. The statistical (Mahalanobis) 
distances in the observation space become ordinary 
Euclidean distances in the canonical space. 
Mathematically, the process of finding the 
coordinates of the original points or means in the 
canonical space amounts to solving a two-sided 
eigenvalue problem leading to a set of axes for 
constructing a biplot. 

Moreover, by adding alpha-bags to a CVA biplot a 
quantitative measurement of multidimensional 
overlap or separation of groups can be obtained, 
thereby providing information not only about the 
degree of overlap, but also the nature of the overlap. 
Gardner (2001) proposed the alpha-bag for 
characterising a two-dimensional cloud of points as 
well as for quantifying overlap among classes.  
Although trivial to rank univariate data according to 
a single criterion e.g. length, the process of ranking 
multivariate data is far from trivial.  Tukey (1975) 
and Rousseeuw, Ruts & Tukey (1999)  discussed the 
concept of halfspace location depth as a means of 
generalising the univariate rank concept to a 
bivariate data set.  This concept forms the basis of 
the alpha bag that encloses the exact innermost α% 
of bivariate data points as specified by the user.  The 
resulting contours are called alpha-bags and are 
proposed as summaries of data points in two 
dimensions.  
 
 

3. HYDROLYSIS OF ZINC CHLORIDE IN 
AMMONIUM CHLORIDE SOLUTIONS 

 
Since aqueous solutions of high concentrations of 
ammonium chloride are especially appropriate for 
the treatment of complex raw materials of both oxide 
and sulphide types, hydrometallurgical processes 
using ammonium chloride have generated 
considerable interest in recent years (Figueiredo et 
al., 1993; Limpo et al., 1992). Process development 
cannot take place without a detailed knowledge of 
the solubility of metal chlorides as a function of 
temperature and composition of solution and in this 
case study data generated by Limpo et al. (1995) are 
examined by means of biplots. 

The data set consisted of 108 samples obtained from 
an experiment where zinc chloride is hydrolysed in a 
watery ammoniacal-ammonium chloride solution. 
Four variables were measured, namely the 
temperature of the solution (ranging from 30-50°C), 
the concentration of chloride anions (Cl-), the 
concentration of zinc cations (Zn2+) and the ammonia 
concentration (NH3). The concentrations were all 

less than 5 M. Under these conditions, three phases 
of zinc chloride can occur, viz. Zn(NH3)2Cl2 , 
Zn(OH)2 and Zn(OH)1.6Cl0.4. Of the 108 samples, 22 
were associated with the precipitation of 
Zn(NH3)2Cl2,      37 with and 43 with Zn(OH)2 and 
Zn(OH)1.6Cl0.4, while six samples consisted of mixed 
precipitates, i.e. three observations associated with 
Zn(NH3)2Cl2-Zn(OH)1.6Cl0.4 and three observations 
associated with Zn(OH)2-Zn(OH)1.6Cl0.4. 

Fig.1. PCA biplot of the hydrolysis of zinc chloride 
data set. 

Figure 1 shows a PCA biplot of this data set.  The 
sample points appear in three horisontal bands 
corresponding to the three temperature settings.  The 
different precipitates, excluding the six mixed 
observations, are indicated by different colours.  The 
variation in the values of NH3, Zn2+ and Cl- for each 
precipitate can be clearly ascertained from the 
respective calibrated axes.  Although the three 
precipitates can be clearly discerned, the PCA biplot 
optimally represents the total variation in the 
observations.  Constructing a CVA biplot of this data 
optimally separates the three classes. 

Limpo et al. (1995) have found that for chloride 
concentrations between 3.5 and 5 M, the solubility of 
the zinc in the ZnCl2-NH4Cl-NH3-H2O system was 
determined by the solubility of the zinc diammine 
chloride. For chloride concentrations lower than 3.5 
M, there were two zinc compounds, viz. zinc 
hydroxide and zinc hydroxychloride. They have 
concluded that the solubility of these two zinc 
compounds depended on the ratio of the total 
ammonia concentration to the total zinc 
concentration, ([NH3]/[Zn]). 

A much richer presentation of these results can be 
obtained by projecting the experimental data onto the 
CVA biplot, as indicated in Figure 2. In this figure, 
the red, green and blue circles indicate the formation 
of Zn(NH3)2Cl2, Zn(OH)2 and Zn(OH)1.6Cl0.4 
respectively. The alpha-bags delineate the innermost 
50% data points within each class. Figure 2(a) shows 
the CVA biplot with 50%-bags. 
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   (b) 

Fig.2. A CVA biplot and 50%-bags of the hydrolysis 
of zinc chloride data set. 

The three classes are separated very well: Although 
not shown here, the innermost 95% of the bivariate 
data points in anyone of the classes do not overlap 
with the 5% most extreme bivariate data points in the 
remaining two classes. The biplot also indicates fair 
amounts of variation within classes. Furthermore, it 
is clear that the formation of Zn(NH3)2Cl2 (red 
circles) is determined by the chloride concentration 
[Cl-] in the range 3.5-5 M, while the formation of 
Zn(OH)2 (green circles) and Zn(OH)1.6Cl0.4 are 
determined by the ammonia [NH3] and zinc [Zn2+] 
concentrations when the chloride concentration is 
below approximately 3.5 M. The centroid of each 
region is indicated by a solid square. 

Figure 2(b) shows the CVA biplot equipped with 
classification regions, while Table 1 is the confusion 
matrix resulting from performing a CVA biplot 
classification of the data. It follows from Table 1 that 
the biplot classification delineating the classification 

regions in Figure 2(b), allows classification of each 
phase Zn(NH3)2Cl2, Zn(OH)2 and Zn(OH)1.6Cl0.4 with 
88.0%, 94.2% and 95.2% correct classifications 
respectively. The overall correct classification is 
93.1%. The mixed precipitates were not included in 
the construction of the classification map portrayed 
in Figure 2(b). Table 2 contains the results when 
these mixed precipitates were classified according to 
the CVA biplot procedure. In this table the actual 
phase θ represents Zn(NH3)2Cl2-Zn(OH)1.6Cl0.4, 
while the phase γ represents Zn(OH)2-Zn(OH)1.6Cl0.4. 

Table 1: Classification of solid precipitates with 
linear discriminant analysis. 

Actual Phase Predicted 
Phase Zn(NH3)2Cl2 Zn(OH)2 Zn(OH)1.6Cl0.4 
Zn(NH3)2Cl2 22 0 0 
Zn(OH)2 2 33 2 
Zn(OH)1.6Cl0.4 1 2 40 
% Correct 
classifications 88.0% 94.2% 95.2% 

Table 2: Classification of the out-of-sample mixed 
precipitates with the CVA biplot classification 

procedure. 

Temp 
(°C) 

[Cl-] 
(M) 

[Zn2+]
(M) 

[NH3]
(M) 

Actual 
Phase 

Classifi-
cation 

40 3.97 0.766 0.872 θ Zn(NH3)2Cl2 
40 4.07 0.804 0.867 θ Zn(NH3)2Cl2 
40 3.48 0.541 0.767 θ Zn(NH3)2Cl2 
30 2.28 0.209 0.250 γ Zn(OH)2 
30 2.29 0.294 0.890 γ Zn(OH)2 
30 2.27 0.233 0.676 γ Zn(OH)2 

 
 

Using this classification Figure 2(a) also shows the 
mixed precipitates interpolated into the CVA biplot. 
These mixed precipitates are shown as three solid red 
circles (Zn(NH3)2Cl2- Zn(OH)1.6Cl0.4) just outside the 
50% region of the Zn(NH3)2Cl2 precipitates 
(delineated by a solid red line) and three solid green 
circles (Zn(OH)2-Zn(OH)1.6Cl0.4) distributed across 
the region of the Zn(OH)2 (delineated by a solid 
green line). 
 

4. CALCIUM CARBIDE FURNACE 
 
Commercial calcium carbide is a grey to reddish-
brown crystalline material consisting of a mixture of 
CaC2 and CaO together with impurities introduced 
by the charge components during manufacture. When 
brought into contact with water, carbide produces 
acetylene gas of high purity in accordance with the 
equation CaC2 + 2H2O → C2H2 + Ca(OH)2 and it is 
this property that is largely responsible for its 
importance as a chemical substance. The volume of 
acetylene generated is therefore used as a measure of 
carbide quality in the industry in preference to the 
percentage CaC2. The volume of gas generated is 
referred to as the gas yield and is expressed in litres 
per kilogram at standard conditions of temperature 
and pressure. The uses of acetylene gas are well 
known, ranging from a source of illumination when 
the gas is burned in air to produce a bright white 
light, to the combustion of acetylene in oxygen to 



provide a high temperature heat source for the 
welding and cutting of metals. Acetylene gas is also 
the basic material for the synthesis of many organic 
compounds including solvents, plasticisers, plastics 
and synthetic rubbers. Calcium carbide is produced 
by fusing together a mixture of coke (or coal) and 
lime in an electric furnace according to the reaction 
CaO + 3C → CaC2 + CO. 
 
A data set reflecting process operation over an 8-
month period was constructed, containing the 
following variables (monitored daily): FURNLOD = 
furnace load (ton), POWERCON = power consump-
tion (MWh/ton), RESIST = average resistance 
underneath the three electrodes (mΩ), CHARCOAL = 
charcoal consumption (ton), COKE = coke 
consumption (ton), ANTHRACT = anthracite 
consumption (ton), LIMUNDER = lime charac-
teristics (% underburnt), LIMOVER = lime 
characteristics (% overburnt), LIM2O = ratio of % 
lime underburnt to % lime overburnt, i.e. LIM2O = 
LIMUNDER/LIMOVER, CARBPROD = carbide 
production (ton), and CARBGRAD = carbide grade 
(litre/kg). 
 
In Figure 3 a PCA biplot is constructed for 
displaying the variation in the data for all the process 
variables simultaneously in a single graph.  The 
multiplication of CARBPROD and CARBGRAD was 
used to quantify the quality of the product.  
Observations associated with lower quality product 
are indicated in red and the observations associated 
with higher quality in green.  Although the PCA 
biplot does not aim to optimally separate these two 
classes, the difference is already obvious from this 
graph with higher quality product corresponding to 
higher values of FURNLOD, CHARCOAL and 
ANTHRACT and lower values for RESIST. 
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Fig.3. A PCA biplot of the calcium carbide furnace 
data set. 

         
  5. CONCLUSIONS 

 
In this paper, biplots resulting from the modern 
perspective of Gower and Hand (1996) were 
introduced. In particular, the potential of these PCA 

and CVA biplots to monitor multivariate process 
systems were demonstrated in two case studies, 
which focussed on the description of 
multidimensional variation and the separation of 
different classes of observations.  

In the first case study, a CVA biplot could be used 
for visualising the hydrolysis of zinc chloride in 
ammonium chloride solutions. Different zinc 
precipitates could be classified in terms of different 
process conditions and mixed precipitates could then 
be assigned to the different classes by mapping them 
to the biplot. 

In the second case study, a PCA biplot was likewise 
used to identify different operating regimes in a 
calcium carbide furnace. Once these operating 
regimes were defined, process conditions 
differentiating between the desirable and less 
desirable regimes could be identified with a CVA 
biplot and this information could then be used to 
formulate process control strategies for the plant. 

Finally, different distance measures can be used with 
the biplot methodology introduced in this paper. In 
addition to the PCA and CVA biplots illustrated here, 
non-linear and generalised biplots can be 
constructed. These biplots enable users to display 
observations together with continuous as well as 
discrete or categorical variables.  Moreover, Gardner 
(2001) has proposed several extensions of biplot 
methodology in statistical discrimination and 
classification to provide for non-linear relationships. 
It follows that biplot methodology is an extremely 
useful tool for analysing multivariate process 
behaviour. 
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