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Abstract

The cardiac signal (ECG) have some characteristics which we may understand the
internal mechanisms of sympathetic and pathetic systems. The main caractheristic
is its quasi-periodic behavior. This behavior can be analysed through HRV – Heart
Rate Variability formed by the time differences between two consecutive major peaks
in a cardiac signal. Due to sample rate of HRV, alternatives methods was proposed
to extract the HRV from ECG. Barros and Ohnishi [1] proposed the HIF Method
– HIF – Heart Instantaneous Frequency, that use a driver function and wavelets to
calculate the instantaneous frequency of ECG with small error in respect to HRV.
In this paper, we verfy the strength of our algorithm – EARM –, comparing the
results obtained from it to the ones obtained from HIF, using samples of regular
cardiac signals and sleep apnea ones. The comparatives results show a small error,
demonstrating that EARM method can be used as alternative to HRV.
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1 Introduction

A well-known characteristic of the heart is
its rhythmical activity. This behavior can
be analysed through the HRV – Heart Rate
Variability. The HRV is calculated by the
set of inverses of the temporal differences
between two consecutive R waves in a ECG
signal. The fluctuation in the ECG is a re-
sult of the interactions between the sym-
pathetic and parasympathetic systems and
pacemaker cells thus the HRV becomes an
important tool for the analysis of the state
of the autonomous nervous system - ANS.

Nevertheless, the HRV presents an inher-
ent disadvantage: its sampling rate de-

pends on the sampling rate of the ECG,
which are acquired values in the order of
128 Hz, for patients at rest; and, 500 Hz,
for patients under exercise. Due to this
fact, some researchers decided to propose
alternative methods for the calculation of
the HRV. These methods, according to
what (Lovell et al. [8]) shows, need to have
a good time-frequency resolution. Hence,
these new methods basically use the STFT
and the Wavelets as analysis tools. Among
the authors that proposed methods us-
ing STFT – Short Time Fourier Trans-
form, are (Kwok and Jones [7]), (Cohen
and Lee [2]), (Kootsookos et al. [6]) and
(Tanaka et al. [10]). The disadvantage of
these methods is its prohibitive computa-
tional weight, which makes more difficult
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an on-line implementation.

Other stronger measure is given by the HIF
method – Heart Instantaneous Frequency,
formulated by Barros and Ohnishi [3]. It
consists of two steps:

• Elaboration of a Driver function that will
provide a rough estimation of the fre-
quencies present in each time interval;

• Calculation of the Heart Instantane-
ous Frequency, using a band-pass filter
around the central frequency obtained
in the last step. To construct this filter,
Wavelets were used.

Initially our job was proposed for offline
processing, like (Barros [1]) method . With
the modifications introduced in this paper,
we managed to produce a version of the
HIF for extraction in real time. These mod-
ifications are the new approach for the cal-
culation of the Driver function, which is
obtained by using a modified model of the
Auto-regressive model proposed by (Kato
and Ozaki [5]); and the optimization of the
band-pass filter, reformulating the Wavelet
used in [1].

2 The Method

The construction of our algorithm follows
two main steps: estimation of the Driver
function, as in the HIF method. This will
provide us with an indication of the main
frequency found in the signal; and, the
modification of the Wavelet implemented
in [1], in a way that the joint resolution
in the time-frequency domain is as good
as possible, according to what (Gabor [3])
established.

2.1 Estimation of the Driver Function

The first part of our task is to formulate
a driver function that will provide an in-
dication of the frequencies present in the

signal. To do so, we modified the PFNAR
model, proposed by (Kato and Ozaki [5]).
This occurs by introducing exponential
coefficients to the usual AR model. This
yields a better performance in obtaining
the instantaneous frequency and also give
it a better resolution. We called this new
model EARM – Exponential Auto Regres-
sive Model. Our model is auto regressive
because it depends on the values of the
previous samples used in the calculation.
In the classic auto-regressive model, the
higher the order of regression the more pre-
cise the result will be. However, a higher
progression order would result in more pro-
cessing time and more computational load.

Hence, to obtain more precise results, with-
out needing to increase the regression or-
der, we introduced exponential coefficients,
resulting in the following formula:

M∑

k=0

[
akx(n− k) + bk · ejΩ0n

]
= ε(n) (1)

where:

• ak – auto-regressive coefficients;
• x(n − k) – values of our input signal x

with a delay of k time units;
• bk – coefficients with the values of the

amplitudes of the frequencies found in
the ECG;

• Ω0 – vector of the most representative
frequencies found in a cardiac signal,
which the values vary from 0.8 to 2.0 Hz;

• e(n) – gaussian error.

The equation (1) can be rewritten in the
following way so we can have the square er-
ror, from where we will derive the system
of equations that will provide the instanta-
neous frequency of the signal that we are
studying:

εk = dk − Ak ·Xk + Bk · Ek (2)

With:



• ε – gaussian error;
• d – input signal;
• A – vector of auto-regressive coefficients;
• X – set of vectors with the values of the

time-delayed input signals;
• B – coefficients of the frequency vector

E;
• E – vector of the frequencies found in the

cardiac signal;
• k – time index.

To obtain the equation for the estimation of
the HIF in Batch mode and on line, we have
to derive the square error which is given by
the Jω cost equation:

Jω = ε2 = (dk − Ak ·Xk + Bk · Ek)
2 (3)

Deriving (3) in relation to the vectors A
and B and equalizing to zero, we obtain the
system of equations used in Batch process-
ing:

A = [dX + BT EX] · [XXT ]−1 (4)

B = [dE + AT XE] · [EET ]−1 (5)

To extract the CIF in real time, we update
the values of Ak and Bk using the following
equations:

Ak+1 = Ak + µ · (BT E + XT A− d)X (6)

Bk+1 = Bk + η · (AT X + ET B − d)E (7)

Where µ and η are the learning rate of the
system.

2.2 Modification of the Wavelet

The next step of the EARM method is the
reformulation of the Wavelet used in [1], so
the relation in the time-frequency domain
is optimized to the highest value assumed
by the multiplication of the variance in the

time domain (σt) by the variance in the fre-
quency domain of the signal (σω). This is
the formulation of the Heisenberg’s uncer-
tainty principle which was adapted to sig-
nal processing by (Gabor [3]).

Being the original Wavelet given by:

ψ(t) = e−π( t·f0
σ )

2

· sin(f0 · t) (8)

The sine factor above can be rewritten as
follows:

sin(f0 · t) =
ej·f0·t − e−j·f0·t

2
(9)

As our Wavelet is analytical, the nega-
tive complex exponential of the numerator
equals zero, redefining (8) as being:

ψ(t) = e−α·t2 · ei·f0·t · 1

2
with α = π · f 2

0 /σ2(10)

Equation (10) belongs to a set of Gabor
functions [3], except for the constant 1/2.
The Gabor functions have the best time-
frequency resolution, with joint variance in
this domain equals 1/4 [3]. To verify the
influence of the constant 1/2 in the final
calculation of the variance of (10), we must
calculate σ2

t and σ2
ω:

σ2
t =

1

4
· V ar

[
e−α·t2 · ei·f0·t

]
=

1

4 · α (11)

For the calculation of σ2
ω, we used the result

of the Fourier Transform of (10),

ψ̂(ω) =
1

2
·
√

2π

α
· e− (ω·f0)2

2α (12)

So, σ2
ω equals:

σ2
ω =

1

4
· 2π

α
· 2α = π (13)

To satisfy the condition σ2
t ·σ2

ω = 1
4
, we will

have α = π. Transposing this result to (8),



we obtain σ = f0, resulting in,

ψ(t) = e−π·t2 · sin(f0 · t) (14)

3 Results

The strength of the EARM algorithm was
tested only for batch signals. The first sig-
nal that we used as a test was the senoidal
signal composes by waves of 3.5 and 7 Hz,
of different amplitudes to white noise was
added. The steps to obtain the HIF are:

• Obtaining the sample of the input signal
x;

• Composition of the vector of frequencies
E, composed by the component frequen-
cies of the signal (3.5 and 7 Hz);

• Establishment of and arbitrary error of
10−7 and use of the formula 4, obtaining
the wanted results.

After the calculation of the HIF via
EARM, we calculate the instantaneous
frequency through HIF. The results were
compared among themselves through the
mean square error formula:

ε =

√√√√√ 1

N

N∑

j=1

[
fy(j)− hif(j)

hif(j)

]2

(15)

Where:

• fy – vector of the samples produced by
the EARM method;

• hif – vector of the samples produced by
the HIF method.

The difference in percentage found for this
first signal was 0,27%.

The next test was the analysis of real car-
diac data. 10 cardiac signals were selected
from normal people and 8 cardiac signals
from sleep apnea carriers. From this point,
we steps followed same as the previous
analysis, compounding the vector E with

frequencies varying from 0, 8 ∼ 2, 0 Hz.
The values of the differences in percentage
between the EARM and the HIF are given
by tables 2.2 and 2:

Table 1
Comparison of the results obtained by the
EARM and HIF methods for normal cardiac
signals

Signal Error in relation to HIF

s1 0.0815

s2 0.0056

s3 0.0234

s4 0.0064

s5 0.0193

s6 2.876e-4

s7 0.0318

s8 0.0101

s9 0.0122

s10 0.0177

Table 2
Comparison of the results obtained by the
EARM and HIF methods for sleep apnea.

Signal Error in relation to HIF

s11 0.0054

s12 0.0034

s13 0.0054

s14 8.1414e-5

s15 0.028

s16 0.0096

s17 7.2453e-4

s18 0.0751

A factor that influences decisively to the
correct determination of the instantaneous
frequency in the EARM is the number of
samples in the signal used for the calcula-
tion. The figures 1,2 and 3 show the values
of the EARM. – for inputs of 25.000, 50.000



and 100.000 samples, respectively – com-
pared to HIF values, with errors in percent-
age between the methods shown in Table
2.2.
Table 3
Comparison of the results obtained for
samples of different sample sizes.

Size of the input (points) Error in relation to HIF

25.000 0.0251

50.000 0.0075

100.000 0.0056

4 Conclusion

The main characteristic of the natural
signals is its temporal non-determinism,
which is why they are considered stochas-
tic processes. Spite of this, some signals
have a periodicity that allow us to ob-
tain its instantaneous frequency. A good
example of these signals is the cardiac sig-
nals, which the instantaneous frequency
allows us to evaluate the state of the Au-
tonomous Nervous System. Some methods
were proposed for the extraction of the ins-
tantaneous frequency, like the ones shown
in (Kwok and Jones [7]), (Cohen and Lee
[2]), (Kootsookos et al.[6]) and (Tanaka
et al.[10]) – which are based on STFT –
Short Time Fourier Transform. Because it
presents a high computational cost, an on-
line implementation is almost impossible.

Our task was based in (Barros and Ohnishi
[1]) work – which allows the extraction
of cardiac instantaneous frequency (HIF)
offline – and introduced exponential co-
efficients to the PFNAR Auto-Regressive
model, by (Kato and Ozaki [5]). This new
model, which was called EARM, will be
used as Driver function. The filtering is
based on the Wavelet of [1], which was
modified to improve the relation σ2

t · σ2
ω to

1/4.

Due to the changing in the Driver function,

we developed two equation systems: one for
the extraction of the FIC in batch and the
other for the on line extraction.
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Fig. 1. Sinal de entrada com 25.000 pontos
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Fig. 2. Sinal de entrada com 50.000 pontos
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Fig. 3. Sinal de entrada com 100.000 pontos


