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Abstract: Electricity Real Time Pricing (RTP) tariffs inter alia have Demand Side 
Management (DSM) as a main aim. Customers are billed according to hourly fluctuating 
energy prices. Essentially RTP pricing signals can be seen as control inputs to change 
customer load usage.  It is suggested that optimised pricing signals sent to RTP 
customers can lead to a much more efficient DSM initiative. This paper describes the 
methodology followed, and results obtained, of such an optimisation process. 
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1. BACKGROUND 
 
Electricity Real Time Pricing (RTP) tariffs inter alia 
have Demand Side Management (DSM) as a main 
aim. RTP Customers are billed according to hourly 
fluctuating energy prices (David and Li, 1991). 
 
Both one and two part RTP tariffs are currently in use 
in South Africa. Two Part RTP is based on a fixed 
price for energy usage at the agreed upon Customer 
Base Load (CBL).  For energy use above this base the 
customers pay the varying RTP price. The customer 
receives a rebate, based on the RTP price, if less than 
the base load is used. 
 
Under One Part RTP the customer is billed against the 
varying energy prices for his entire usage. 
 
The reasoning behind these tariffs, from a DSM 
perspective is clear. High prices indicate an over 
demand/under supply situation. The theory is that if 
the clients are exposed to the high prices they will 
temporarily cut back on their demand, thus relieving 
strain on the network. 
 
Industry feedback indicate that these tariffs do indeed 
go a long way towards achieving their goal. A short 
coming of the tariff is that the prices sent to the 
customers do not take their price sensitivity into 
account.  This leads to a sub-optimal system. 
 
This paper proposes a technique to optimise the 
pricing signal sent to customers. The signal is 
optimised in such a way that maximum DSM reaction 
is obtained at minimum cost to the utility. 
 

The above optimisation problem can be solved within 
the Hybrid Systems modelling framework, utilising 
Integer Programming (IP). The process inter alia 
involves writing the customer load response models 
in Mixed Logical Dynamical format (Williams, 
1993), and using Branch-and-Bound techniques to 
find the optimal solution.  
 
This project forms part of a larger whole, the ultimate 
goal of which is to use the MLD models developed, 
and techniques described by Bemporad, Morari, and 
various other authors (Bemporad and Morari, 1999; 
Bemporad et al., 2000a; Bemporad et al., 2000b) to 
design an optimal controller. The results described 
here will be used as a benchmark. 
 
 

2. CUSTOMER RESPONSE MODELS 
 

2.1 Introduction 
 
After extensive investigation, it was found that RTP 
customers respond to short term price changes, rather 
than to absolute prices. Due to the nature of the 
customers’ processes, they tend to react to prices that 
differ from the average, rather than to the increase of 
the average price. The customers have to keep their 
processes running on the long term, so if the average 
cost of electricity increases they have to absorb it, or 
“go under”. But, they do respond very well to daily 
price spikes away from the average. 
 
This study was conducted on 5 Two Part RTP 
customers. 
 
It was found that the hourly price compared to a 
moving price average over 168 hours (1 week) is a 



 

     

realistic input to the system. The output is then the 
hourly load compared to a 168 hour moving load 
average. In other words, to obtain the input to the 
plant for a certain hour, the RTP prices for the 
previous 168 hours are averaged, this average is then 
subtracted from the RTP price in the particular hour, 
with the result referred to as ∆RTP: 
 

( )( ) [ ]{ }1,169 0000
−−∈−=∆ TTttRTPERTPRTP TT

 
Where T0 refers to the current hour, and E() is the 
average operator. 
 
In the same way the plant output, 

0TLoad∆ , can be 
defined as: 
 

( )( ) [ ]{ }1,169 0000
−−∈−=∆ TTttLoadELoadLoad TT

 
The subscript T0 will be dropped from

0TLoad∆ and 

0TRTP∆ for the rest of this document. 
 
 
2.2 Typical Customer Response 
 
Figure 1 shows a typical customer’s ∆Load vs. ∆RTP, 
as well as the standard deviation of ∆Load. This 
customer was selected because its ∆Load response is 
representative of that of the other customers on the 
tariff. 
 
It is clear that the load response for a typical customer 
is non-linear. However, closer inspection reveals that 
the response can be divided into distinct control 
“regions”. Within these regions linear approximations 
can be used to describe the reaction.  
 
This makes it possible to write the models within the 
MLD framework, and use IP to find an optimal 
solution. 
 

Typical RTP Customer's Load Response
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Fig. 1. A typical customer’s ∆Load vs. ∆RTP, as well 

as the standard deviation of ∆Load. 
 
2.3 Modelled Response 
 

Linear regression was used to obtain models 
describing the ∆Load vs. ∆RTP in the identified 
regions. 
 
For the customer introduced in the previous section, 
the following model was obtained: 
 
∆Load = 0 with ∆RTP ∈  [0, 15]                (1) 
 
∆Load = -A with ∆RTP ∈  (15, 50]               (2) 
 
∆Load = -A + m⋅(∆RTP – 50)  
      with ∆RTP ∈  (50, 70]                 (3) 
 
∆Load = -B with ∆RTP ∈  (70, ∞]                           (4)    
    
The average standard error, defined as the difference 
between the actual and modelled response is 6%. 
 
Figure 2 shows the modelled vs. actual response for 
the customer in question.  
    

Typical RTP Customer's Load Response [Actual vs Modelled]
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Fig. 2. Typical Customer Modelled vs. Actual 

response    
 
Although the ∆Load response model for only one 
customer is presented in this section, the responses of 
all 5 customers were used for the optimisation 
procedure presented in the next section. 
    
    

3. OPTIMISATION 
 
3.1 Introduction 

 
The structure of the models presented lend themselves 
to optimisation in the Integer Programming (IP) 
framework (Williams, 1993). 
 
Once the reaction models had been derived, the next 
step was to find a transform that would change the 
input ∆RTP price (RTPInput) to an optimal RTP price 
(RTPOutput). 
It was important to not only optimise for maximum 
DSM reaction, but also to bring the cost of the 



 

     

reaction into the utility function to be optimised. The 
reason for this is that if optimising for DSM reaction 
only, then the output price would always be the 
highest possible price, as this would ensure that all 
the customers reacted to their maximum capability. 
This would however mean extremely high cost to the 
utility, and is also not viable as it would cause all the 
prices over all hours to saturate at their maximum 
allowed level. 
 
Optimising for cost only will have the reverse effect, 
the prices would always be pegged at their minimum 
levels – having no positive effect on the customers’ 
reactions. 
 
The utility function used for optimisation purposes is 
made up of two components: a DSM Index that gives 
an indication of the reaction compared to the 
maximum possible reaction; a Cost Index, that gives 
an indication of the Cost of the reaction compared to 
the maximum possible cost. These indexes are 
defined as follows: 
 

)max(
1

*

RTP
RTPCostIndex
∆

∆−=  

 
where 

 
α+∆=∆ RTPRTP*  

 
Where ∆RTP is as defined previously, the difference 
between the input price, and the average input prices 
over the last 168 hours. ∆RTP* is defined as the sum 
of ∆RTP and α.  
 

With ])max(,[ RTPRTPRTP ∆−∆∆−∈α  
 
Max(∆RTP) is defined as the maximum possible 
∆RTP that will still elicit a further reaction from the 
participants (as can be seen from the customer model 
above, if ∆RTP goes above a certain level, the 
customers can no longer further react to it, and have 
to absorb the price). 
 

)max(

*

Load
LoadDSMIndex
∆

∆=  

 
Where as above, ∆Load* represents the difference 
between the clients’ reactions, and their average 
(Nett) load over the past 168 hours, given the price 
signal ∆RTP*. Max(∆Load) is the maximum possible 
reaction (to a price signal larger or equal to 
max(∆RTP)). 
 
The utility function for this application is defined as 
follows: 
 

DSMIndexCostIndexctionUtilityFun ⋅=  

A commercially available IP solver (What’s Best) 
was used to find the ∆RTP* that gives the maximum 
UtilityFunction for each input ∆RTP.  
 
In other words, for each input ∆RTP ∈  [0, 
max(∆RTP)], a corresponding ∆RTP* was found that 
maximises the UtilityFunction. 
 
 
3.2 Results 
 
The results of the above optimisation process is a 
mapping giving an optimal ∆RTP* for each ∆RTP, as 
shown in Figure 3.  
 
These results were stored in  a look-up table. This 
means that one does not have to rerun the whole 
optimisation process each and every time one wants 
to find the optimal ∆RTP* given a certain ∆RTP.  
 
For example, lets say ∆RTP is 7c/kWh, and one wants 
to find the optimal ∆RTP*, one can simply lookup the 
value (21 c/kWh in this case) from the table. Should 
the dynamics behind the models change, or one 
decides to change the Utility Function, it will be 
necessary to regenerate this look-up table. 
 
 

Optimisation Mapping
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Fig. 3. Optimal ∆RTP to ∆RTP*  mapping. 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

     

4. APPLICATION OF RESULTS TO HISTORIC 
RTP PRICE SERIES 

 
4.1 Introduction 
 
The optimisation results were now applied to 
historical RTP data, in order to find what the 
implication would be to historical DSM and revenue. 
 
RTP prices for the period October 2002 to end 
September 2003 were used. These prices were used as 
inputs to the optimiser, and the outputs represented 
both the optimal ∆RTP* for each hour, as well as the 
optimal client reaction. The assumption here is that 
the customers will respond as modelled. 
 
An important parameter for this study is to decide at 
which level ∆RTP represents a strong DSM signal, as 
the price transform should only be used on prices 
representing such a signal.  
 
A few remarks.  
 
By setting the cut-off ∆RTP to 5c/kWh, 43% more 
DSM can be achieved, at an additional cost of  2.75%.  
 
If the cut-off ∆RTP is set to 6c/kWh or above, the 
system starts breaking even. Meaning the nett savings 
start becoming positive.  
 
For example, if the cut-off ∆RTP is set to 10c/kWh, 
12% more DSM reaction can be achieved, whilst 
realising a 9.3% cost saving compared to normal 
operation. 
 
At a cut-off ∆RTP of 6 c/kWh, 33% more DSM 
reaction can be obtained, and a 1.5% cost saving 
realised. So the utility can essentially, at no cost, 
achieve 33% more DSM reaction. 
 
 
4.2 Finding an Optimal Cut-Off ∆RTP. 
 
As already mentioned, it is important to identify an 
optimal cut-off input ∆RTP. The optimisation 
transform should only be applied to prices above this 
cut-off price. It is relatively simple to find an optimal 
point for this cut-off price, as will be presented next. 
 
In order find an optimal cut-off ∆RTP, the following 
indexes were used: 

NormalDSM
NormalDSMCOPDSMAdditionalCOPDSMIndex +

=
)()(  

 
 
Where AdditionalDSM is the total DSM Reaction 
achieved under the normal price regime. 
AdditionalDSM(COP) is the additional DSM reaction 
achieved given the optimal price mapping, and the 
cut-off price (COP). 
 

MaxSaving
COPNettSavingCOPxSavingInde )()( =  

 
Where NettSaving(COP) is the difference between 
the additional cost, and savings obtained, given a off-
off price COP. MaxSaving is the maximum saving 
that can be achieved given any cut-off price. 
 
A utility function, combining the two indexes above 
was now created: 
 

)()()( COPDSMIndexCOPxSavingIndeCOPTotalIndex ⋅=  
 
Figure 4 provides a graphical presentation of 
TotalIndex(COP). 
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Fig. 4. TotalIndex(COP). 
 
TotalIndex has a maximum value (equal to 0.9929) at 
COP=16 c/kWh. At this off-off price, the nett saving 
is 12%, with the additional DSM reaction close to 
zero. This point thus also represents the scenario 
where one wants to keep the DSM reaction constant, 
and is only interested in obtaining savings. 
 
 
5. CONCLUSION AND FUTURE WORK 
 
The results obtained look promising. The techniques 
used lend themselves very well to modelling and 
optimising RTP customers’ responses to different 
input prices. 
 
This project forms part of a larger whole, the ultimate 
goal of which is to use the models developed, and 
techniques described by Bemporad, Morari, and 
various other authors (Bemporad and Morari, 1999; 
Bemporad et al., 2000a; Bemporad et al., 2000b) to 
design an optimal controller. The results described 
here will be used as a benchmark. 
 
It is recommended that the implications of practically 
implementing such an optimised pricing scheme be 
investigated. Special attention should be given to the 



 

     

political implications (both within the utility, and as 
far as the National Energy Regulator is concerned). 
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