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Abstract: This paper describes a computer application of parameter estimation
for the three dimensional HIV/AIDS model. The program uses a least square
based procedure with standard optimization routines and aims to allow parameter
extraction for individual patients. Together with the basic parameter estimation,
it is shown how additional information from outside a measurement dataset can
be included in the estimation routine to increase the reliability and accuracy of
parameter estimates. The developed application uses the theoretical basis of cost
function based, parameter estimation to allow the medical practitioner to extract
the three dimensional model parameters for HIV/AIDS patients. The program
gives greater insight into the progression of the disease, and helps the practitioner
to decide on the correct dosage for each patient. Also, advice on the time to initiate
therapy, the drug dosing and the interval between tests is given.
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1. OVERVIEW AND BACKGROUND

Human Immunodeficiency Virus/Acquired Im-
munodeficiency Syndrome (HIV/AIDS) is an area
of active research in numerable medical insti-
tutions. Mathematical modelling in combina-
tion with highly active antiretroviral therapy
(HAART) resulted in a paradigm shift about the
disease and its treatment. However, there are still
many uncertainties in the area of HAART. The
best time to initiate therapy, dosage levels and
the optimal combination of drugs are areas cur-
rently demanding further research. Together with
these, the side effects of different drugs add to
the complexity of finding treatment strategies.
There is thus a need to determine the influence of
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HAART on the virus and on the immune system
on an individual patient basis. This is necessary to
insure that each patient can be treated according
to personal needs.

A helpful tool to decide on dosages in treatment
of HIV/AIDS is a basic model that describes the
disease and the influence of drugs on the virus. A
three-dimensional mathematical model has helped
to reshape the perception of the disease, by allow-
ing the estimation of key parameters, such as the
half-lives of infected cells and free virus. The pub-
lished estimates are for a subset of the parameters
only, and give an indication of parameter values
for a cohort of patients. In order to use this model
as a tool for treatment decisions, it is necessary
to determine all six parameters of the model for
individual patients. Even though there are general
observations that can be made from the model and



its structure, it is only when the model is tailored
to each patient’s individual parameters that clear
benefits in the treatment strategy arise.

It is important that model parameters can be
determined from measurements that are acquired
on equipment that is accessible to local health
services. This paper presents a computer-based
program that can be used to extract all six of the
model parameters from patient data, even under
less favorable conditions.

Some measurements from clinics might contain
enough information to extract useful parameters,
even when it is not possible to extract all six
parameters. In such situations the program can
be used to accommodate generalizations of some
parameters that do not vary considerably between
patients.

The application is developed to allow the med-
ical practitioner to estimate the parameters for
HIV/AIDS patients. This allows greater insight
into the progression of the disease, and helps the
practitioner to decide on the correct dosage for the
patient. The therapy scheduler gives advice on the
time to initiate therapy, the drug dosing and the
interval between tests.

The program can be used at different levels of
complexity. The basic program demands no back-
ground knowledge from the user. For practitioners
with experience in mathematical modelling, there
is ample opportunity to fine-tune the procedures
to conform to the special needs that may arise
from different medical situations.

2. THEORETICAL BASIS

This section describes the approach of parameter
estimation presented in (Filter and Xia, 2003).
A three-dimensional model of HIV/AIDS, used
in this program, consists of three variables: the
population sizes of uninfected cells (T ), infected
cells (T ∗), and free virus particles (v). Free virus
particles infect uninfected cells at a rate propor-
tional to the product of their abundances, βvT .
The rate constant, β, describes the efficacy of this
process. Infected cells produce free virus parti-
cles at a rate proportional to their abundance,
kT ∗. Infected cells die at a rate δT ∗, and free
virus particles are removed from the system at
a rate cv. By assuming a constant production
rate, s and death rate dT for the uninfected cells,
the three-dimensional model of virus dynamics is
obtained (Nowak and May, 2000; Perelson and
Nelson, 1998):











Ṫ = s − dT − βTv,

Ṫ ∗ = βTv − δT ∗,

v̇ = kT ∗

− cv.

(1)

Furthermore, for the purpose of estimating model
parameters, it will be assumed that plasma viral
load and CD4+ T cell count are measured. That is,
the measurement outputs are y1 = T, and y2 = v.

This is in accordance with the current prevailing
medical practice (Panel on Clinical Practices for
Treatment of HIV Infection, 2001).

The basis of parameter estimation used in the
program is the squared distance between measure-
ment points and a trajectory of points generated
with χ̂. As with the method considered by Xia
(2002), this method is in essence least square
(LSQ) based, but with two important differences.
Firstly, derivative estimation is only present when
a nominal curve is generated by a numerical ordi-
nary differential equation (ODE) solver and, thus,
this estimation is not influenced by measurement
noise.
Secondly, the cost function is not limited to the
LSQ distance, thus, it can be expanded to accom-
modate a diverse base of knowledge in order to
increase the accuracy of parameter estimation.

A pre-existing implementation of the Nelder-
Mead Simplex search method is used here as the
optimization routine, to find a set of parameters
that minimizes the cost function 2 . At each itera-
tion of the search, the cost function is called by the
optimization routine. When a pre-set tolerance is
met by the optimization routine, it exits with the
final parameter estimation. The basic steps of the
cost function are as follows:

(1) The function receives a list of data points for
the CD4+ T cell and the virus count with
their respective time points. Together with
these, χ̂ is also passed to the function.

(2) When constraints are specified for χ, they are
enforced at this point. (By default only pos-
itive values are allowed for the parameters.)

(3) The function uses χ̂ and solves the dynamic
model of eq. (1). This is done within the
framework of a pre-existing numerical ODE
solver.

(4) The numerical solution is used to calcu-
late the difference between each data point
and its predicted value. The differences are
squared and summed.

(5) Any additional penalty values are calculated
and added to the total, which is then re-
turned to the optimization function.

It should be clear that this method is not prone
to the derivative estimation error, as is the LSQ
method considered in (Xia, 2002).

2 It should be emphasized that the estimation procedure

is not dependent on the use of the Nelder-Mead search
method. Other search methods could be used. It is im-

portant that the chosen search method does not rely on a

smooth cost function.



In the rest of this section, the cost function will
be discussed in more detail.

2.1 Pure LSQ with correction factor

Apart from the problem of derivative estimation,
there is a second major drawback in the pure
LSQ method. The equations that are fitted to
the data, contain product terms of CD4+ T cell
and virus counts. This essentially forces the data
vectors to be of equal length for proper estimation.
If this is not the case, interpolation has to be
employed, which degrades the results. Since the
penalty function method does not require any
product terms, there is no constraint on the length
of CD4+ T cell and virus data vectors. In fact
none of the points of the two data vectors have
to coincide in time. Thus, for a nominal set of
parameters, χ̂, and initial conditions, x̂0, a curve
is generated with a numerical ODE solver to find
T̂ and v̂. Together with N measurements of T

and K measurements of v, at time t1, . . . , tN , and
τ1, . . . , τK respectively, we define the basic cost
function as,

Jw =

N
∑

n=1

(T̂ (tn) − Tn)2

N mean(Tn)
+

K
∑

k=1

(v̂(τk) − vk)2

K mean(vk)
. (2)

The differences in data points may not jeopardize
the balance of the penalty function, thus both
data vectors have to be weighted by their mean
value and their length. For equal length data
vectors, division by their length is not necessary.

2.2 Logarithmic distance

From (CDC Working group, 2001) it is known
that the tests used to determine viral load are
log based. Even with the highest precision tests,
a log variance of 0.6 can be expected in the
measurements. For the Rocher Amplicor HIV-1

MonitorTM test, the most commonly used test by
the participating laboratories in (CDC Working
group, 2001), a log difference of up to 2.2 was
noted. Also for the experiments performed by
Perelson and Nelson (1998), the virus data is fitted
to the least square of logarithmic distance.

For this case the cost function can be modified as
follows,

Jl =

N
∑

n=1

(T̂ (tn) − Tn)2

mean(Tn)N
+

K
∑

k=1

(log v̂(τk) − log vk)2

mean(log vk)K
.

(3)
Thus, the logarithmic distance between virus data
points is used in the least square calculation. In
this example the CD4+ T cell data term is still
computed as a linear value. Similar changes can
be made for this term if necessary.

2.3 Additional refinements

It is often the case that a set of data on its own
does not contain enough information for a com-
plete determination of parameters, but when the
prevailing circumstances are known, this knowl-
edge would allow the extraction of key parame-
ters. In these situations the custom penalty func-
tion is helpful, since outside knowledge of the
dataset can be incorporated into the parameter
estimation cycle.

The main points where refinements can be in-
corporated are at point 2 and 5 in the penalty
function. Some of the common refinements that
are used in the program are described below.

Enforcing limits
This is usually done at step 2 in the penalty
function, by checking the parameters against a
predefined range and correcting any parameters
that do not fall within the specifications. A
second option would be to add these limits
directly to the penalty value at step 5. This
would allow for weighted penalties if any of the
limits are violated.

Prior knowledge of parameters
When a parameter is known from another
source (e.g., experiment, assumption or litera-
ture), this knowledge is incorporated at step 2.
At the same time the optimization routine has
to be instructed not to search for the parame-
ters that are already known.

Prevailing conditions
When prevailing conditions (e.g., c > δ) for
a dataset are known from other sources, these
conditions are usually added by means of an
additional term in step 5. This term must be
scaled to ensure its proper influence.

As an example, consider the experiment described
in (Perelson and Nelson, 1998, pp. 16–19). In
this experiment key assumptions were made in
order to extract two of the six parameters. Firstly
each patient was assumed to be at steady state
(“set-point” has been reached) before initiation
of therapy. This is a prevailing condition for that
experiment, since the author had access to viral
load data before the experiment, which indicated
that the viral loads were in steady state. Secondly
Nowak and May (2000, p.32) state a prior knowl-
edge that infected cells live longer than free virus.
This information is reflected in Jr by adding two
terms to the basic LSQ cost.

Jr = J + k1 max(
dv̂s

dt
, 0) + k2 max(δ̂ − ĉ, 0), (4)

where J is either Jw or Jl, and v̂s is the vector
of computed viral loads, truncated after a few
days. In this case scaling constants k1 and k2 are
chosen such that any violation of the prevailing



conditions would result in a clear increase of the
penalty function.

The first refinement term corresponds to the
knowledge that the patient is in steady state be-
fore initiation of therapy. Thus, no positive deriva-
tive should be allowed initially, for the viral load.
An intuitive way to see this is to note that therapy
results in a decline of virions, thus, an increasing
virion count could only be the result of fluctu-
ations before therapy, which is not possible since
the patient was in steady state at the start of ther-
apy. The second refinement term corresponds to
the statement that the average infected CD4+ T
cell lives longer than free virions.

Some tests were performed to ensure that this
estimation procedure produces viable parameter
values, with encouraging results. Interested read-
ers are referred to (Filter and Xia, 2003) for more
information.

3. FROM THEORY TO PRACTICE

By using the theoretical background as a spring-
board, a program is created that allows users from
diverse backgrounds to increase the effectivity
of HIV/AIDS treatment strategies. With the in-
sights obtained from parameter estimation, users
can monitor individual patients without the need
to understand underlying mathematical details of
the model.

Some of the key points for the user are listed
below:

• The user interface allows both patients and
general practitioners to enter their sample
data and receive treatment guidelines. Data
can be entered in the familiar environment of
Microsoft Excel.

• Information falling outside the basic data-
set can be entered and is incorporated into
the estimation procedure to increase the ac-
curacy of estimation.

• The program determines a set of initial con-
ditions from the data and external informa-
tion for the identification routine without
the intervention of an HIV/AIDS modelling
expert.

• Inconsistencies in results and data are de-
tected and the user is informed about the
discrepancies to allow expert help to be ob-
tained.

• If treatment is initiated after an original set
of data has been examined, the program can
analyze the influence of treatment and give
an indication of its effectiveness.

• In situations where a user needs detailed
information, or where personal limits must be
added that are not currently interpreted by

the program, a higher level user can modify
the cost function directly and access the raw
output from the identification routine.

Some of the underlying functions are listed below:

• The program follows a control-system ap-
proach to model identification using a modi-
fiable cost function as described in section 2.

This is the key function of the program and
in situations where enough data points are
available this would be adequate for param-
eter estimation with a static cost function.

• The cost function is LSQ based and combines
the basic LSQ cost with the bounds and
prevailing conditions from the user supplied
information.

Here the user information from outside the
data set comes into play. As an example:
When a patient supplies the program with an
estimated time since infection that indicates
that the steady state in viral load has been
reached, the patient is advised to take med-
ication in conjunction with the load tests.
From the point where medication is taken,
the cost function is modified as in section 2.3.
Here, the advice to take medication is based
on the necessary conditions for parameter
estimation. For more information about the
necessary conditions for parameter estima-
tion see (Xia and Moog, 2003).

• The fine-tuning of the cost function is hidden
from the user and user input about prevailing
circumstances is translated into mathemati-
cal terms.

Direct user intervention in the cost func-
tion is not necessary for the previous point.
Pre-programmed knowledge is incorporated
automatically, with feedback to the user. If
any assumption needs to be overridden, the
user can select to do so without directly edit-
ing the cost function.

• A parameter search is done by standard
means and the resulting parameters are in-
terpreted for the user.

Once the basis of data and external in-
formation is in place, the parameter search
commences along standard avenues. It is in
the interpretation of results that there is still
a great deal of knowledge necessary. Since
the parameters are not yet in standard use
among practitioners, there is no experience
base from which to make recommendations.
Currently, the recommendations are made
according to general research results as given,
for instance, in (Jeffrey et al., 2003). The
program allows theoretical scenarios to be
viewed with different treatment strategies.
As more individual experience is gained by
practitioners and patients, this information
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Fig. 1. Visual printout of estimated parameters
for an example patient

can be used to generate more pointed recom-
mendations.

• In situations where there is not enough data
from a single patient, the program can use
information from its database to give possible
scenarios that allow the user to make initial
treatment decisions.

Here the user can benefit form general
parameter estimates of other studies like
(Perelson and Nelson, 1998). Since there is
no detailed data available for the individual,
some parameters can be fixed at expected
values to generate a general scenario that
contains those initial data points and consid-
ers the external information. If, for instance,
the patient has been infected for more than
fifteen months, it is likely that viral load is
in steady state (Filter and Xia, 2003), and
from a single sample some of the ratios of
parameters can be estimated. Even if the
finer details are not available, the user still
gets an indication of possible scenarios.

As an example, the estimation for a patient is
shown in figure 1, with the corresponding report
for this patient shown in figure 2. The report is
text based and contains the main information and
advice. The user can also see a graphical represen-
tation of the parameters in a treatment context
and compare different scenarios of treatment as
shown in figure 3. The scenarios represented in
this figure are based purely on theoretical values of
drug efficacy. Since patients can be monitored af-
ter the initiation of therapy, these theoretical val-
ues can be augmented by the information gained
during treatment. Thus, the trajectory of viral
load after initiation of therapy may be used to

PExample:

Basis Report  

----------------------- 

Enough data points were available to determine parameters: 

 s=.11.409         

 d=.0.008   

 beta=.1.2x10^-6 

 delta=.1.35        

 c=.1.31      

 k=.2889.2   

 Set-point=.12223 

Estimated time to reach set-point =.14 months 

 Constraints on parameters were set to default. 

  c<delta 

  s<50 

  d>0.008 

 No additional modifications made cost function 

   

Fit seems adequate: no outliers were detected in data-set. 

The spacing between data points is very large, it is 

important to perform a visual check on the data to ensure  

that a good fit has been found. It is recommended that 

samples are taken closer together. For more details see 

the guidelines for sample spacing. 

CD4 cell count seems stable at an acceptable level.

The viral set-point falls in the lower range: according to 

the panel on clinical practices on HIV/AIDS it might be 

desirable to postpone a rigorous treatment regime. 

For visual scenarios of different treatment strengths, 

please consult the treatment advisor application.

Fig. 2. Basis report printout of estimated param-
eters for an example patient
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Fig. 3. Treatment advisor visual printout for dif-
ferent efficiencies of protease inhibitors

determine the efficacy of a regime even before viral
load is suppressed below the benchmark values
described by the Panel on Clinical Practices for
Treatment of HIV Infection (2001).

The described program is in the early stages of
development where only the key functions are
implemented. In order to keep the program rel-
evant, the advice generator must be kept up to
date in accordance with current guidelines and
experience gained from program use. One of the
future development goals is to incorporate param-
eter estimation for higher-dimensional models for
patients with enough data points.

It should be stressed that a computer program
cannot replace the expert care of a medical prac-
titioner. Program users should always be aware
that this program is a tool to help in decision-



making and planning of treatment, but that the
final decisions lie with the medical practitioner in
dialogue with the patient.

4. CONCLUSION

The developed application uses the theoretical
basis of cost function based parameter estima-
tion to allow the medical practitioner to esti-
mate the three dimensional model parameters for
HIV/AIDS patients. The program gives greater
insight into the progression of the disease, and
helps the practitioner decide on the correct dosage
for the patient.

Even though these basic functions are imple-
mented, the advice of the program is currently
based on a small experience base. As the individ-
ually tailored parameter estimates become a part
of each patients treatment strategy, the experience
of practitioners in the field and insights from re-
search can be incorporated to increase the quality
of advice given by the program.

In order to cater for personal experience in treat-
ment strategies, the program can be used at dif-
ferent levels of complexity. The basic program de-
mands little background knowledge from the user,
but for practitioners with experience in math-
ematical modelling, there is ample opportunity
to fine-tune the procedures to conform to the
special needs that may arise from their medical
situations.
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