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Abstract: Breakthrough products are innovative products that address a new set
of needs and thus require the creation of a new market in order to succeed. Due
to this requirement, the eventual success of breakthrough products is notoriously
difficult to predict.
In this paper, a new model for the diffusion of breakthrough products is developed,
based on the well-researched and widely accepted observation that new adopters
need an acceptable reference before they actually adopt. This simple observation
implies a reference network between potential adopters that can be modeled as a
directed graph.
If the reference network is assumed to be a random graph, a first order differential
equation can be derived. The solution of the differential equation predicts initial
exponential growth, followed by a stage when new adoption gradually declines as
saturation sets in, similar in form to qualitative adoption life cycles. The model
requires only a small number of parameters.
The model assumes random networks but it is unlikely that many reference
networks would be truly random graphs. Reference networks are examples of social
networks and studies indicate that social networks typically are scale-free networks.
Scale-free networks contain a few nodes with a very large number of incoming links,
which means that a few reference sites are very widely acceptable. These special
nodes are known as hubs in network terminology.
Closed form expressions for diffusion in scale-free networks are more difficult to
obtain but computer simulation demonstrates a number of important observations.
The major observations are that the shape of the adoption curve is very similar for
random and scale-free networks but that adoption by a reference hub in a scale-free
network is both necessary and sufficient for the rapid diffusion of a breakthrough
product.
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1. INTRODUCTION

Breakthrough products are innovative products
that address an unfulfilled set of needs and thus
require the creation of a new market in order to
succeed. Due to this requirement, the eventual
success of breakthrough products is notoriously
difficult to predict.

In this paper, a new model for the diffusion of
breakthrough products is developed, based on the
well-researched and widely accepted observation
that new adopters need an acceptable reference
before they actually adopt. This simple observa-
tion implies a reference network between potential



adopters that can be modeled as a directed graph.
Such a network is illustrated in Figure 1.

Fig. 1. Reference network of potential buyers

The nodes in Figure 1 represent potential adopters,
while the directed links depict reference relation-
ships. For example, node A in figure 1 considers
node B to be an acceptable reference but the
reverse is not true. Expressed differently, it means
that if and when node A develops a buying im-
pulse, it will definitely adopt the breakthrough
product if node B has already adopted it. On
the other hand, if neither node B nor any other
acceptable reference node (nodes C and D in this
case) has adopted, node A will not adopt, even if
it currently has a strong buying impulse.

In the same manner, any node has a number of
directed links that are connected to other nodes.
Should any node adopt the breakthrough product,
it in turn becomes a reference site for further
potential adopters.

A breakthrough product is thus similar to a virus
spreading through a population. Just as a virus
needs contact between members of the population
for an epidemic to occur, a breakthrough prod-
uct needs an interconnected network of potential
adopters to be able to penetrate the market.

If we plan to introduce a breakthrough product,
the market for it invariably is a new market.
In such a case it means that we will experience
difficulty in selling the product without reference
sites. This is a universal difficulty experienced
with diffusion of innovation in social networks
(Rogers, 1995).

Let us, for the moment, assume that our break-
through product has been sold to the first adopter
and is operating successfully. Our next concern is
to persuade as many potential adopters as possi-
ble to adopt the product. This process is known as

diffusion. We will develop a mathematical model
for the diffusion of breakthrough products in the
rest of this paper.

2. ADOPTION LIFE CYCLE

A first-time buyer of a breakthrough product is
known as an adopter. A buyer can obviously adopt
a breakthrough product for the first time only
once. Should a buyer buy a similar product again,
it is called a replacement. We are only interested
in first time adoptions here.

The starting time, t = 0, is defined to occur
when the first potential buyer adopts. Initially,
relatively few other potential buyers are linked to
the first adopter and the next sale only occurs
when one of those linked nodes develops a strong
buying impulse. The number of adopters grow
very slowly in the beginning, but with increas-
ing adoptions, the likelihood of further adoptions
increases exponentially.

Over time, with a large percentage of potential
buyers becoming adopters, the number of non-
adopters declines accordingly. This slows down
new adopter growth until it virtually stops. The
resulting curve that is traced by the number of
new adopters over time is known as the adoption
life cycle. We develop a mathematical model for
the adoption life cycle in this section.

As shown in the previous section, a potential
buyer must develop a buying impulse and have
access to a reference site before adoption occurs.
For simplicity, we assume that the occurrence of
buying impulses is independent of the reference
site network structure.

This is a reasonable assumption if we accept
that buying impulses occur due to particular
problems encountered by potential adopters and
not in the first place as a result of external
communication. This assumption is most valid in
cases where buying impulses originate from actual
needs rather than fashion trends. Our model will
thus be more useful for sales to companies than
to consumers.

Another way to describe this scenario is to think
of attending a cocktail party where you expect
to know only a few people. If you are like me,
you do not like standing around in a room full
of strangers. When you arrive, you peep in and
only enter when you see somebody that you know,
otherwise you go for a walk and return after a
while to see if an acquaintance has arrived in the
meantime.

In this simple scenario, the arrival times at the
door and your network of acquaintances could be



said to be independent (assuming that you do not
all agree to arrive at the same time).

We designate the total buyer population as N ,
the average number of links per node as k and the
number of buyers who have already adopted as A.
The next step is to calculate the probability that,
given that a non-adopter node is linked to another
node, the other node is an adopter or non-adopter:

P{a link is to an adopter} =
A

N

P{a link is to a non-adopter} = 1 − A

N

where k = average number of links per node
A = number of adopters
N = total number of potential adopters

A potential adopter who develops a buying im-
pulse will buy, according to our network reference
model, if the buyer’s associated node is linked
to at least one adopter. Conversely, the potential
adopter will not buy, even with a strong buying
impulse, if the associated node is not linked to an
adopter.

Assuming that there are A adopters at any specific
stage, the probability that a potential buyer that
develops a buying impulse will actually adopt is 1 :

P{adoption | buying impulse}
= P{link to an adopter}
= 1 − P{all links to non-adopters}
= 1 − P{a link is to a non-adopter}k

= 1 −
(

1 − A

N

)k

(1)

The notation P{adoption | buying impulse} is a
conditional probability and it reads as follows: the
probability of an adoption, given that a buying
impulse occurs. The reason why we may take
the kth power of the probability of a link to a
non-adopter is because of our assumption that
the buying impulse is independent of the links in
the network. Strictly speaking, it is only valid for
k << N .

Now that we know what the probability is for
a potential adopter with a buying impulse to
actually adopt, all that remains is to calculate
the number of clients with a buying impulse at
any given stage. Since we are only considering
new adopters, the number of remaining potential
adopters is N−A. If the probability that a specific

1 This derivation is due to Professor Johan du Preez of

the University of Stellenbosch, South Africa.

potential adopter develops a buying impulse dur-
ing a unit time interval is b, the expected number
of buying impulses, Nimpulse, occurring during a
unit time interval is:

Nimpulse = b (N − A) (2)

where b is the probability of a client developing a
buying impulse during a unit time interval.

Using equations 1 and 2, we find the total number
of new adopters, ∆A, at any given time by:

∆A = b ∆t (N − A)

(
1 −

(
1 − A

N

)k
)

(3)

where

∆A = number of new adopters
∆t = duration of infinitesimal interval
A = number of adopters
b = buying impulse probability

N = total number of potential adopters
k = average number of links per node

Equation 3 enables us to develop a feeling for the
dynamic behaviour of a breakthrough product in
a new market. Figure 2 shows a typical example.

Time

Adoption life cycle

Adopter saturation

Fig. 2. Typical adoption life cycle, ∆A
∆t , and adopter

saturation, A
N , curves plotted against time

Figure 2 shows the adoption life cycle, ∆A
∆t , versus

time, as well as adopter saturation, A
N , versus

time. The adoption life cycle is fundamental to
our study in marketing. The adoption life cycle
curve shows how the number of new adopters,
∆A, initially increases rapidly (exponentially) and
then declines as the adopter population becomes
saturated.

It is already obvious that there are two major
stages during the adoption life cycle. We call the
period before the peak in the adoption life cycle
the early market and the period after the peak,
the mature market.

Equation 3 can be written as a differential equa-
tion by noting that the variable A, the number



of adopters at a certain time, t, is a function
over time, more accurately written as A(t). In
the remainder, we will write A(t) when we want
to explicitly indicate the time dependence, but
we will also use A in cases where it helps with
making the equations less cluttered. Anyway, we
mean exactly the same thing by A and A(t).

dA(t)
dt

= b (N − A(t))

(
1 −

(
1 − A(t)

N

)k
)

(4)

We note that A/N is the adopter saturation,
i.e. the ratio between adopters and the total
adopter population, N . This is a useful parameter.
However, to further reduce clutter, we define the
remaining adopter capacity as v, where:

v =
(

1 − A

N

)
(5)

Substituting equation 5 in equation 4 and using
the differentiation chain rule, we obtain:

dv

dt
= −bv(1 − vk) (6)

Equation 6 describes the diffusion dynamics of a
breakthrough product from the time of success-
ful launch. It is interesting to note that, for the
special case of k = 1, this equation is identi-
cal to the logistic growth equation first proposed
by Belgian mathematician Pierre Verhulst (1838)
and widely used in biological population growth
studies (Kingsland, 1982).

Equation 6 is also similar to the so-called Bass
model (Mahajan and Bass, 1990). The crucial
difference between our model and the Bass model
is that the latter does not take any networking
effects into account and hence implicitly assumes
k = 1.

In any marketing effort, it is important to be able
to predict where the peak in the adoption life
cycle occurs. To calculate this, we differentiate the
adoption life cycle curve, equation 6, with respect
to v, the remaining adopter potential, and set the
result equal to zero, in order to obtain:

Amax

N
= 1 − 1

(k + 1)
1
k

(7)

This result is surprising at first glance. The adop-
tion life cycle peak, as a function of adopter sat-
uration ( A

N ), is only dependent on the average
number of links per node in the network. However,
if we remember that we can view the diffusion of
a breakthrough product into a new market as a
virus spreading through a population, it is less

surprising that the interconnection rate should
play an important role.

Links per node, k Adopter saturation, A/N

1 50%

5 30%
10 21%

15 17%

20 14%

Table 1. Adopter saturation at life cycle
peak for various average links per node in

the reference network

From Table 1 it is clear that a higher intercon-
nection rate in a market results in earlier market
maturity, i.e. at a lower level of adopter satura-
tion. This knowledge is of crucial importance to
a fast growing company. An astute organisation
can use this information to predict, by estimating
the interconnection rate and adopter saturation
in a market, when the market will change from an
early to a mature market.

The observation that the adopter life cycle peaks
at lower adopter saturation levels for higher mar-
ket interconnectivity highlights a major difference
with the Bass model, which implicitly assumes
that k is always equal to 1. This, in turn, predicts
that the adopter life cycle will always peak at
50% adopter saturation, which will normally be
too late.

Note that we have determined what the adopter
saturation is when the peak in the adopter life
cycle occurs and that it depends only on the
average interconnection density, k, in the market.
We have not yet determined at what time the peak
occurs. In order to do that, we need to solve the
differential equation in equation 6. Luckily, this is
straightforward and the result is:

A(t)
N

= 1 − 1(
1 + e

kbt+ln
(
( N

N−1 )
k−1
)) 1

k

(8)

While deriving equation 8, it is necessary to define
t = 0. In line with our assumption so far, we
defined t = 0 to occur when A = 1, i.e. when
the first adoption occurs. From that time forward,
the adoption life cycle starts its relentless curve,
mostly independently of supplier actions.

The observation that the adoption life cycle is
independent of supplier actions needs some qual-
ification:

(1) The first adoption must have taken place,
otherwise the market is still in t < 0 territory.
This implies that at least one supplier must
have a product offering that offers value for
money to an adopter.



(2) Further potential buyers must also see value
for money in the available product offer-
ing(s), otherwise they remain part of unsat-
isfied demand. Since one adopter saw value
for money and continuous product improve-
ments are usually taking place, it is not un-
realistic to assume that other adopters with
similar needs to the first adopter will see sim-
ilar value for money in the available product
offering.

(3) Potential adopters who do not see the same
value for money proposition in available
offerings have different needs to the first
adopter, which implies that they are in a
different market segment. It could thus be
argued that the market segment in which
they are has not yet reached time t = 0. This
implies that closely related but not identical
market segments might be in different stages
of maturity.

Equation 8 is the desired result. If we know
three things about a new market, we are able
to predict the adopter saturation at any time
after the first adoption. All we need to know is
the number of potential adopters, N , the average
interconnection rate, k, in the market and the
probability that a client will develop a buying
impulse in one unit of time, b.

The buying impulse probability, b, might seem
to be a difficult parameter to measure. If the
adopters are companies, the estimation of b is
simplified significantly.

Companies typically work on an annual budget.
The buying impulse frequency is thus not more
frequent than once per year. Not all potential
adopters develop a buying impulse every year. If
we assume that one in x adopters develop a buying
impulse in a year and our time is measured in
weeks, b is calculated as:

b =
1

52x
per week

We are further able to predict at what time, tm,
the adoption life cycle peaks by using equation 7
in 8. The result obtained is:

tm =
1
kb

ln

 k(
N

N−1

)k

− 1

 (9)

.=
1
kb

ln(N)

The approximate solution in equation 9 is ob-
tained with the help of Taylor series. From 9 we
draw a few conclusions:

(1) N is always positive and bigger than one,
thus ln(N) > 0. The peak time, tm, is thus
always later than the starting time, t = 0, of
the adoption life cycle. Naturally, this must
be the case but stating it is useful as a sanity
check on our result.

(2) For larger k, the adoption life cycle peaks
earlier. This is consistent with our expecta-
tion, i.e. that a breakthrough product dif-
fuses faster in a highly interconnected mar-
ket.

(3) For larger b, the adoption life cycle peaks
sooner. This is also intuitively satisfying.

(4) Equation 9 is an approximation to the exact
solution but it is very accurate (better than
0.1% for typical parameters).

3. REFERENCE NETWORKS AS SOCIAL
NETWORKS

The existence of reference networks has been
studied extensively (Rogers, 1995). Unfortunately
such networks are invariably small (less than a
hundred nodes) and do not provide reliable evi-
dence of the network structure for networks with
thousands of nodes.

It is important to note that reference networks are
examples of social networks, since reference rela-
tions fundamentally are based on humans, even in
strictly business to business markets. Some hints
are provided by studying other kinds of social net-
works. Numerous examples, ranging from actors
in Hollywood movies to sexual relations in Sweden
to indicate that social networks tend to be scale-
free (Barabási and Bonabeau, 2003).

A scale-free network is a network where the his-
togram of the numbers of links per node is a
straight line on a logarithmic scale. In practice
this means that there are many nodes with a small
number of links while a few nodes have a huge
number of links (known as hubs) and every value
in between. There is thus no typical number of
links per node.

The emergence of scale-free social networks can be
motivated by noting that such networks grow with
new nodes being added over time. Two factors
lead to the ubiquity of scale-free networks:

(1) New nodes can obviously only link to older,
existing nodes. Even if new nodes link ran-
domly to existing nodes, older nodes will
have time to collect more links.

(2) Newer nodes tend to prefer linking to existing
nodes with more links. In terms of our refer-
ence paradigm it means that existing nodes
that are already more widely referred to will,
in general, be more acceptable references for
newer nodes as well.



An example of a scale-free network constructed in
this manner is shown in Figure 3. Note the high
number of links at the oldest node at 3 o’clock.

Fig. 3. Scale-free reference network with N = 25
and k = 3. The oldest node is at 3 o’clock.
Newer nodes were added in an anti-clockwise
order. Note that all links are directed from
newer to older nodes.

It can be shown mathematically that networks
grown under these conditions result in scale-free
networks (Barabási and Albert, 1999).

In the derivation of the adoption life cycle equa-
tion in 6, the implicit assumption was that nodes
are linked randomly, thus forming a random refer-
ence network. A similar mathematical derivation
for scale-free networks is not easy to obtain in
closed form, but the effect can be simulated. These
simulations demonstrate the following aspects:

(1) The general shape of the adoption life cycle
remains the same.

(2) The shape of dA
dt plotted as a function of

t may be dramatically different for random
and scale-free reference networks but it is
very similar when plotted against A

N .
(3) If an initial adoption node happens to be a

recent addition with few links, such a node
is most probably unacceptable as a refer-
ence for older nodes with more links. This
means that full-scale exponential growth can-
not start in practice until one of the hubs
adopts.

(4) Once one of the hubs adopts, a large number
of potential adopters are linked to the hub
and they only require a buying impulse to
adopt.

The existence of hubs in scale-free networks thus
provides a necessary and sufficient condition for
successful diffusion of breakthrough products into
scale-free networks. This is consistent with king-
pin adopters as described by Geoffrey Moore

(Moore, 1991) and underlines the crucial necessity
of cultivating such highly influential reference sites
early on.

4. CONCLUSION

A mathematical model for the diffusion of break-
through products into new markets was devel-
oped. The main novelty, compared to existing
models, is that the concept of a reference network
is highlighted. It was shown that, if the reference
network is scale-free, like most social networks
tend to be, a necessary and sufficient condition
for rapid diffusion is adoption by one of the hubs
in the network.

Apart from some interesting quantitive results,
it is hoped that this paper will sensitize en-
trepreneurs to the existence of reference networks
and the crucial importance of identifying reference
hubs. The latter aspect is so important that it
is fair to state that if a reference hub cannot be
identified in a potential new market, it would be
unwise to make any substantial investments in
entering the market.
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