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Seismometers and MEMS accelerometers use the force-balance principle to obtain measurements.  In 
these instruments the displacement of a mass object by an unknown force is sensed using a very high-
resolution displacement sensor.  The position of the object is then stabilised by applying an equal and 
opposite force to it.  The magnitude of the stabilising force is easily measured, and is assumed to be 
equivalent to the unknown force.  These systems are critically dependent on the displacement sensor.  
In this paper we use a resonant quartz tuning fork as the sensor.  The tuning fork is operated so that its 
oscillation is lightly damped by the proximity of the movable mass object.  Changes in the position of 
the mass object cause changes in the phase of the fork’s resonance; this is used as the feedback variable 
in controlling the mass position.  We have developed a novel acceleration sensor using this principle.  
The mass object is a piezoelectric bimorph diaphragm which is anchored around its perimeter, allowing 
direct electronic control of the displacement of its centre.  The tuning fork is brought very close to the 
diaphragm centre, and is connected into a self-oscillating feedback circuit which has phase and 
amplitude as outputs.  The diaphragm position is adjusted by a feedback loop, using phase as the 
feedback variable, to keep it in a constant position with respect to the tuning fork.  The measured noise 
for this sensor is approximately 10.0 mg in a bandwidth of 100 Hz, which is substantially better than 
equivalent commercial systems. 
 

1. INTRODUCTION 
 
Many instruments work by treating the measurand as 
a disturbance, and measuring the input required to 
null that disturbance.  Examples are in probe 
microscopy, where the disturbances are changes to 
the probe-surface interaction; and in seismometry, 
where the disturbances are forces applied to a mass 
by movements of the Earth’s surface.  This method 
allows a nonlinear measurement (of the disturbance) 
to be replaced by a linear measurement (of the 
balancing action); this in turn allows the construction 
of systems with very high dynamic range. 
 
A particular case of this type is acceleration 
measurement.  In these systems, the force applied to 
the system results in an acceleration to a test mass.  
The mass displacement is sensed, and an opposing 
(restoring) force is applied to nullify the acceleration.  
The mass therefore moves in only a vanishingly 
small zone around the null point.  This permits the 
use of large masses with weak suspensions (to 
enhance sensitivity), but reduces the need for a long 
range of travel for such a mass.  
 
Central to this system is the displacement sensor.  It 
must have high resolution and wide bandwidth; but 
fortunately, it does not require a wide range, as if the 
system is working correctly, the mass should not in 
any real sense move at all.  In current force-balance 
systems, it is usual to use a capacitive or optical 
displacement sensor [1]. 
 
Recently, Grober et al [2] have suggested that a 
quartz crystal tuning fork, oriented so that the mass 
movement would impinge on one of the tines, could 

be more sensitive to displacement than any other 
commonly used method.  These tuning forks are 
widely available as oscillators in quartz watches and 
timing systems.  The relevant parameters for  these 
crystals at resonance are a noise floor of 0.62 pN/Hz, 
and a mean root square Brownian motion of only 0.32 
pm. Closed loop responses of the crystal are also 
significantly faster than the corresponding open loop 
responses.  
  
In this paper we describe a novel force-balance 
sensor, suitable as an accelerometer or wideband 
seismometer, using a tuning-fork displacement 
sensor.  We discuss the control of such a system, and 
show that the sensitivity is substantially better than 
commercially available systems. 
 

2. OVERVIEW 
 

Physically the system is set up inside an aluminium 
casing. The tuning fork crystal is mounted on a 
threaded ceramic cylinder. The diaphragm is 
mounted above the crystal and supported and secured 
around its outer edge. The threaded cylinder is then 
turned, moving the tuning fork arms into close 
proximity with the diaphragm. A rough idea of the 
physical set up of the system can be seen in figure 1.  
 
Two distinct control loops exist in the set up of the 
tuning fork seismometer. The control loop to keep the 
crystal resonating and the control loop to keep the 
piezoelectric diaphragm at a specific height above the 
crystal. For both control loops the measured outputs 
come from the crystal. Of the two outputs, phase and 
amplitude, the phase response of the crystal will be 
faster than its amplitude response by a factor of Q. 



For this reason the phase between the drive voltage 
and output voltage is used for the diaphragm height 
control. The diaphragm height control loop provides 
the force feedback for the system, and therefore the 
relative ground acceleration measurement comes 
from this loop, so therefore speed is more imperative 
for this control loop. The basic setup of the tuning 
fork seismometer control systems is also shown in 
figure 1. 

 
 

3. TUNING FORK DISPLACEMENT SENSOR 
 
In order for the crystal to perform as a displacement 
sensor it is imperative that it is locked at a frequency 
somewhere in its resonant band. As mentioned 
before, the amplitude of the output waveform from 
the crystal would be used to determine at which 
frequency the crystal was operating. 
 
The equivalent circuit of the crystal can be described 
as a simple RLC series circuit in parallel with a 
package capacitance caused by the electrode plating 
[2]. The package capacitance affects the operation of 
the crystal and has an adverse effect on its ability to 
perform as a displacement sensor. The effect of the 
package capacitance is reduced by driving another 
capacitance, of equal value, in parallel with the 
crystal with the inverse signal used to drive the 
crystal. As they are equal in value the effect of the 
one capacitance will cancel out the effect of the 
other. With the package capacitance negated the 
crystal behaves like a series RLC circuit with 
resonant phase and amplitude characteristics seen 
below in figure 2.  

 
To keep the crystal operating at a point in its resonant 
band, using the amplitude of the output waveform as 
the control variable, requires that the output 
waveform amplitude is measured and the crystal 
operating frequency adjusted accordingly. A basic 
outline of the system appears in figure 3. 
 

 
In order to accurately measure phase for the 
piezoelectric diaphragm controller, it is also 
important that the two signals that are to be measured 

Figure 2 - A clear resonant peak can be seen at 
about 32745 Hz, and the phase moves from a 
lagging to a leading phase through the resonant 
peak. The different coloured lines represent the 
different levels of damping caused by crystal 
proximity to a surface. The proximity increases 
the viscosity of the air, which damps the tuning 
fork arm movements. This effectively changes the 
resistance in the equivalent circuit, as resistance 
is attributed to the arm movement [2].  If the top 
horizontal line is considered to be the locking 
amplitude level, the phase and operating 
frequency changes for each level of damping can 
be seen. There are two possible operating points 
for each amplitude, one on either side of the 
resonant peak. The operating frequency therefore 
either needs to be swept up from lower 
frequencies or swept down from higher 
frequencies to one of the operating points. The 
offset in resonant frequency from the expected 
32768Hz is due to the crystal package having 
been opened.    
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Figure 1: The basic setup of the tuning fork 
seismometer. Clearly seen are the two control 
loops present in the system. Besides providing 
the force feedback mechanism, the diaphragm 
also forms the mass and spring of the 
seismometer. Thus the mechanical sensitivity of 
the device can be determined by the mass of the 
diaphragm and its spring constant.   
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Figure 3 – The basic block diagram for the 
amplitude control loop. The sine wave producing 
VCO could be set up to either sweep up or down 
to the operating point depending on the polarity 
of the controller output and the initial set up of 
the VCO. The rectifier measures the amplitude of 
the output waveform so it can be compared to the 
set point.   
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are the same size. Achieving this initially required 
some dynamic gain control circuitry, which 
amplified the level of the drive signal to the crystal 
and the output signal from the crystal by varying 
amounts so that they were the same size. Although it 
worked this was a cumbersome complicated process 
involving many components and extra circuitry.  
 
A different approach to simplify the process was to 
use the rectified drive signal as the set point to the 
difference amplifier. This eliminated the need for 
active gain control, as the system operates at the 
point where the drive signal and output waveform are 
the same size. By adding gain to the drive and output 
signals the frequency at which the system operates 
can be changed. Furthermore, to reduce the ripple 
caused by the rectifiers a variable phase shifter is 
added to the drive signal, so that the two signals can 
be manipulated to be in phase at the chosen operating 
frequency. The ripple on the two rectified signals is 
then cancelled out to produce a cleaner signal for the 
control circuitry.  
 
When designing the control circuitry, step tests were 
performed across the whole crystal rectifier 
combination. This was done so that the time 
constants present in the rectifiers could also be 
accounted for in the control of the system. The 
control block diagram in figure 4 explains the 
process. 
 

 
A number of step tests were performed and the 
results were averaged to determine the characteristics 
that were to be used to design the controller. The 
averaged results of the step tests and the 
characteristic response for the open loop system 
appear in figure 5. 

 
The relatively high gain and settling time along with 
the low damping factor were identified as the main 
characteristics that needed to be improved by any sort 
of control circuitry that was to be implemented. 
Using the data obtained from the initial step tests a 
second order controller was designed to effectively 
improve the system. Once the controller was built, 
more step tests were performed and the results 
analysed. The results appear in figure 6 below. 

 
By reducing some of the time constants present 
in the system, greater speed increases would be 
possible. However by reducing these time 
constants the system would be more unstable. 
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Figure 6 – The step response for the closed loop 
system with the implemented second order 
controller. The response and characteristics 
were determined using the same process as 
used for the open loop test. From the open 
loop tests the areas identified for improvement 
were gain, damping factor and settling time. 
From the new graph it is clear that large 
improvements were achieved in all the areas of 
focus. Gain = 1.078, ζ = 0.615, ωn = 
498.126Hz, 2% Settling Time = 0.013s. 
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Figure 4 - Control block diagram for the frequency 

locking loop. Clearly seen is the G(s) for the 
control system which consists of the crystal with 
its package capacitance eliminated as well as the 
VCO, rectifier and the gain. Also seen is the set 
point generation using the drive signal to the 
crystal. Step tests were performed across the G(s) 
combination so that the control circuitry could be 
designed. 
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Figure 5 – The average step test response for the 
open loop system. The results of numerous tests 
were averaged to produce this result. The 
characteristics of the system were determined by 
finding the equations that describe the average 
response of the system. The following data was 
extracted: Gain = 26 Damping Factor ζ = 0.204 
Natural Oscillation Frequency ωn = 91.29Hz 2% 
Settling Time = 0.214s  
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Also the system is fast enough for the 
application so no further speed increase is 
necessary. 
 

4. FORCE FEEDBACK MECHANISM 
 
As mentioned before phase is used to measure the 
crystal’s proximity to a surface. For this reason 
accurate phase measurement is imperative to the 
force feedback control system. There are numerous 
different techniques for phase detection ranging from 
simple mathematical techniques to complicated 
signal analysis. For simplicity the phase detector 
used was a simple differential operational amplifier 
circuit. This circuit multiplies the voltage difference 
between inputs by a preset value determined by 
external resistors. This circuit will output a sine wave 
of varying amplitudes depending on the phase 
between the two input signals.  
 
Due to the fact that this phase detector cannot discern 
between lagging and leading phase the system was 
operate away from the zero phase region. As the 
phase is deliberately set to zero in the previous loop 
to reduce the rectifier ripple a phase offset is added 
before they were measured. The control system 
appears below in figure 7.  

 
As with the frequency locking loop, the controller 
was designed by first grouping together all external 
components as a g(s). Numerous step test results 
were analysed and averaged to ascertain a relative 
average response for the open loop system. The 
average response with its corresponding system 
characteristics appears below in figure 8.  
 

 
As expected the response is faster than the amplitude 
locking loop as the phase responds a lot more 
quickly. It is not however as fast as expected and this 
is due to the slow response of the piezoelectric 
diaphragm. The system is also still quite oscillatory 
and has a particularly low damping factor. These two 
problems, as well as the need to maximise system 
speed to increase effective bandwidth became the 
principle considerations in designing the controller. A 
second order controller was designed and 
implemented, the system was then tested again and 
the average results appear below in figure 9. 
 

 
The results of these tests indicate that the control 
systems are fast enough and stable enough to enable 
the entire system to perform as a seismometer and to 
test the basic principles behind the design of the 
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Figure 9 – The averaged step tests for the closed 
loop system for the piezoelectric diaphragm 
control system. The tests show that in close loop 
the system is much more stable and faster than 
the open loop. The Damping factor was improved 
and the gain increased to more suitable levels. 
Gain = 15.04, ζ = 0.507, ωn =1458.04Hz, 2% 
Settling Time = 0.0054s  
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Figure 8 – Open loop response for the piezoelectric 
bimorph diaphragm control system. Again the 
system is slow and oscillatory with a low damping 
factor. As expected the response is faster than the 
amplitude response. For this result the Gain = 
0.014, ζ = 0.204, ωn = 91.29Hz 2% Settling Time = 
0.214s
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Figure 7 – The complete piezoelectric diaphragm 
control system. Shown are three potential 
measurement outputs for the system. The output 
from the phase detector and the error signal are 
very similar as the only difference would be due 
to any gains in the differential op amp. The 
diaphragm control voltage would give the best 
representation of ground motion at lower 
frequencies. At higher frequencies where more 
errors appear in the loop due to the system 
struggling to maintain the correct displacement, 
the other outputs might provide a better idea of 
actual ground motion.  Again, all components 
external to the controller were grouped together 
to obtain a G(s) for the system. This G(s) is then 
used to design the controller.  
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device. Further increases in speed and stability may 
be possible with further analysis and design but for 
the current requirements these control systems 
proved more than adequate.    

 
5. RESULTS 

 
The completed device was now tested against two 
known devices, an ADXL05 silicon MEMS 
accelerometer and an exploratory geophone. The 
devices were mounted on a loudspeaker drive 
capable of low frequency operation. Ground motion 
was simulated by driving the speaker with signals of 
different frequency and magnitude. Tests were 
performed to determine the bandwidth, low noise 
capability and the sensitivity of the seismometer. 
 
For each frequency the output of the accelerometer 
and the geophone were compared to the control 
signal to the piezoelectric diaphragm in the tuning 
fork seismometer. The noise floor of each device was 
measured and compared to the outputs to obtain a 
signal to noise ratio for each frequency for each 
device.  
 
The first test showed that the tuning fork 
seismometer follows the other device’s response at 
lower frequencies. The expected roll off frequency of 
around 180Hz from the step tests was confirmed by 
the test. The geophone response also died out at these 
frequencies but the accelerometer output confirmed 
that the speaker was still moving. Due to the small 
accelerations at low frequencies the drive signal to 
the speaker was maximised for frequencies below 1 
Hz. Oscilloscope screen shots of the seismometer 
response at these low frequencies appears below in 
figure 10. 
 

 
Figure 10 – Oscilloscope screen shots of the 

tuning fork seismometer’s response at 25mHz 
and 5mHz. The seismometer may be able to 
function at lower frequencies and theoretically 
down to DC but 50sec per division was the 
longest time division available on the 
oscilloscope. There was no discernable 
response from either of the other devices at 
these low frequencies due to the low loud 
speaker acceleration.  

Although much more sensitive than the 
accelerometer, the tuning fork seismometer had a 
worse average signal to noise ratio than the 

geophone. The poor mechanical sensitivity of the 
seismometer due to the low mass and high spring 
constant of the piezoelectric diaphragm was 
improved by adding mass to the diaphragm to 
increase the mass in the system. Although more 
sensitive, the noise signal of the seismometer output 
also increased. On closer analysis of the seismometer 
and geophone signals it was notice that there was in 
fact substantial correlation between the signals, 
indicating background seismic noise. 
 
To reduce this background seismic noise the testing 
equipment could be isolated from all external noise. 
However as there were two correlated signals it was 
decided to use mathematical techniques to separate 
the noise signal. The mathematical techniques used 
are described in detail in the book ‘Engineering 
Applications of Correlation and Spectral Analysis’ by 
Bendat et al [3].  
 
The technique uses the coherence, or fraction of the 
power of one signal that also appears in another 
signal, to determine which components of the signals 
are unique to each signal and which components of 
the signals are common to both of the signals. For a 
seismic signal S(t) the system can be illustrated by 
the block diagram in figure 11 below. 
 

 
Coherence is defined as follows, 

 
Where GXY is the cross spectral density of signal X 
and signal Y and Gxx is the power spectral density of 
signal X. Coherence is then calculated by averaging 
the cross spectral density and power spectral densities 
from many different samples of signal X and Y. GXX 
and GYY can be broken up into their signal 
components as follows. 

 
In order for the required signal components to be 
extracted the very small geophone noise is assumed 
to be zero. This eliminates one of the variables and 

Coherence: γ2
XY(ω) =  

GXX(ω) GYY(ω)  
(GXY(ω))2 

Figure 11 – Block Diagram for the measurement 
process. S(t) is the seismic signal. H1,2 are the 
transfer functions for each of the sensors which 
produces a voltage dependant on the seismic signal. 
N1,2(t) are the two independent noise signals. X(t) is 
the measured signal from the geophone and Y(t) is 
the measured signal from the seismometer.   
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GXX(ω) = GUU(ω) + GN1N1(ω)  = |H1|2 GSS(ω) + GN1N1(ω) 

GYY(ω) = GVV(ω) + GN2N2(ω)  = |H2|2 GSS(ω) + GN2N2(ω) 



allows the equations to be solved. Small as the 
geophone noise is, the 50 Hz component of the signal 
was reduced by filtering to further reduce the noise 
of the sensor. The noise of the tuning fork 
seismometer can now be extracted as follows. 

 
Numerous sets of data were recorded, analysed and 
averaged so that the various relevant results could be 
calculated. These results were then used as shown in 
the equations above to extract the noise signal and 
the recorded seismic signals from the recorded data 
for the tuning fork seismometer. Graphs of the results 
appear below in figure 12. 
 

 
From the first result the transfer function H1 for the 
geophone can be calculated by comparing the output 
of the geophone with that of the accelerometer. H1 
can then be used to calculate the actual size of the 
seismic signal. The seismic signal can then in turn be 
used to calculate H2 the tuning fork seismometer 
transfer function. Sensitivity can now be determined 
using the equations above. 
 
Average sensitivity of the seismometer is calculated 
to be 2.7919V/m.s-2. With the recorded noise level of 
the 50 Hz signal having a magnitude of 0.298V the 
minimum measurable acceleration will be 0.106m.s-2. 
 
 

6. CONCLUSIONS AND DISCUSSIONS 
 
This paper has proved that the concept of using a 
tuning fork crystal and piezoelectric diaphragm in a 
force feedback system can function as a seismometer. 
The bandwidth of the device is shown to be DC to 
about 200Hz with an average sensitivity of about 
10mg. 
 
Although good results were achieved further 
improvements are possible. Reducing the 50 Hz noise 
would dramatically improve the system as the next 
recorded noise signal is about 100 times smaller than 
the 50 Hz noise signal. Alterations to the mechanical 
sensitivity and frequency operating point would also 
increase sensitivity; however the slow response of the 
piezoelectric diaphragm would have to be improved 
to realise these improvements. Increasing the speed 
of the piezoelectric diaphragm response would also 
increase the bandwidth of the device.    
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Figure 12 – Graphs of the recorded power spectral 
density for the seismometer and the extracted noise 
signal. The power is given in volts squared and is 
the actual reading for each reading squared. The 
main noise signal is at 50 Hz. The noise spike at 14 
Hz is due to a phase shift between the two signals 
resulting in an imperfect correlation in some 
cases. Increasing the number of samples would 
further decrease this spike leaving just the 50 Hz 
signal as the chief source of noise. 
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GVV(ω) = GYY(ω) γ2
XY(ω)  

GN2N2(ω) = GYY(ω) (1 - γ2
XY(ω) )   

γ2
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