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Abstract: To expand the flight envelope of a typical jet transport and to minimize number of 
tests for the certification process, a design methodology has been proposed based on neural 
networks. The design procedure leads to an intelligent neuro-controller for landing phase that 
can handle different wind patterns. The procedure uses, a classical PID controller as the 
teaching mechanism of a neuro-controller. Finally, a hybrid neuro-PID controller which its 
inner loop is PID-based and its outer loop is neural-based has been proposed. Two wind 
patterns, Strong and Very Strong winds in comparison to JFK Airport Downburst, have been 
investigated to test the performance of the proposed controllers. To discuss the complexity of 
the controllers, three aspects have been considered. Simulation results show that the hybrid 
controller provides the necessary performance conditions in presence of Very Strong wind. 
Copyright © 2003 IFAC 
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1. NOMENCLATURE 

 
u : perturbed longitudinal velocity (ft/sec.)   
w : perturbed vertical velocity (ft/sec.)      
q : perturbed pitch rate (deg/sec.)                  
θ  : perturbed pitch angle (deg.)                      
x : horizontal position of aircraft  (ft)            
h : altitude (ft)                                                 
h&  : sink rate (fps) 

h0f : flare initiation altitude (ft)                        
g : gravity (32.2 ft/sec2) 
ug : longitudinal wind velocity (ft/sec.) 
wg : vertical wind velocity (ft/sec.) 

Eδ  : elevator angle setting (deg.) 

Tδ  : throttle setting (deg.) 
U0 : normal speed (235 ft/sec.) 

0γ  : flight path angle (-3 deg.)   
h0g : glide initiation altitude (ft) 

sα  
: stall angle of attack (deg.) 

 
 

2. INTRODUCTION 
 
Strong downbursts such as the one shown in Fig. 1 
are responsible for number of hard landing and crash 
each year (Shen et al., 1996). Many research 
activities have been conducted to design an 
automatic landing controller for different classes of 
aircraft, especially heavy jet transports. For example, 
Ref. (Iiguni et al., 1998) describes an automatic 
landing system (ALS) based on a human skill model. 
The model is expressed as a nonlinear I/O mapping 
from the aircraft state to the control command 
provided by a human expert; a gain adaptation 
technique has also been introduced for robustness. In 
Ref. (Shue et al., 1999), a mixed H2/ ∞H control 
technique has been employed to develop controllers 
for automatic landing system of a commercial 
airplane. In Ref. (Kaminer et al., 1990), 



     

∞H synthesis has been applied to the problem of 
designing a flare mode for automatic landing for a 
typical transport airplane. In Ref. (Ben Ghalia et al., 
1993), Linear Quadratic Gaussian with Loop 
Transfer Recovery (LQG/LTR) has been used to 
design an automatic landing controller for a typical 
commercial aircraft encountering a wind shear. In 
Ref. (Saini et al., 1997), adaptive critic neural 
networks have been used to design a controller for a 
benchmark problem in aircraft autolanding. In Ref. 
(Juang et al., 2001), five different neural network 
structures are utilized to design intelligent 
autolanding controllers using linearized inverse 
dynamic model. In Ref. (Yan et al., 2001), a Radial 
Basis Function Neural Network (RBFN) has been 
used in the control scheme to aid a conventional 
controller for aircraft autolanding procedure. In Ref. 
(Kee et al., 2001), a controller based on fuzzy logic 
methodology has been designed for a flight vehicle 
that enables it to track a pre-determined flight path 
trajectory for safe landing. All of these works suffer 
from the point that they lack sufficient generality for 
a flight phase as landing phase is. Landing as a flight 
phase which normally has the highest percentage of 
accidents and/or incident could vary considerably 
(Jeppesen Inc., Private Pilot Manual, 1992) due to 
its vicinity to the ground and existence of unknown 
pattern of wind and gust in addition to the other 
factors surrounding an airport. It is therefore 
desirable to develop a control system that can handle 
different climatic conditions and in this regard, neuro 
based control systems could be a solution. 

Accidents during the landing phase could 
fall into two different categories. The first category is 
related to the human errors and the second one is due 
to the sudden changes in atmospheric conditions. It is 
the intention of this work to present a methodology 
to practically, omit the need for switching between 
glide and flare modes during landing phase of flight 
in presence of very strong winds with the help of 
neural networks technique.  The procedure has three 
major steps as follows: 
a. Firstly, a PID controller is designed for a known 

trajectory. 
b. Secondly, a neuro-controller is designed to 

control the aircraft through-out the glide and flare 
modes.  

c. Finally a hybrid neuro-PID controller is designed 
to handle the aircraft in Very Strong wind pattern. 
In this controller the inner loop is PID based and 
the outer loop is neural based. 

In this approach, the data and outputs generated by 
the PID controller are used to train the neuro-
controller. Obviously, the PID controller is deigned 
only for a single known trajectory in a specific set of 
conditions. However, it could be used for a wide 
range of flight conditions, based on the 
characteristics of neural networks. Omission of the 
switching mechanism between the glide and flare 
modes leaves out the selection of proper point to 
flare. In this way, uncertainties due to the so called 
"sensor errors" are no longer a concern. Different 
simulation conducted shows that with the help of 
hybrid neuro-PID technique acceptable landing 

performance in severe atmospheric conditions are 
possible. 
 

 
3. PROBLEM DEFINITION AND OBJECTIVES 

 
During complex manoeuvres, such as landing and 
take-off; the dynamics of the aircraft is changing 
rapidly which leads to a complex design procedure as 
far as conventional controllers are concerned. The 
problem can become even more complex, while gusts 
and other natural climatic conditions are present. 
Two major modes of landing phase studied here are 
glide-slope hold and intercept and flare and touch 
down with regard to (Roskam, 1979). The following 
characteristics are usually observed, during landing 
phase of a flight: 

1. A suitable altitude should be selected for the 
aircraft autopilot to start to glide mode or glide 
mode initiation. 

2. At a height of about 15 meters (45 ft) AGL, 
the flare manoeuvre is started which results in 
nose being lifted, reducing the vertical speed 
of the aircraft and allowing the main gear to 
touch the ground firstly and smoothly. During 
this limited time interval the control law has to 
be adjusted continuously. 

3. Through continuous decrease in the aircraft 
altitude, the ground effect starts to play a 
major role and the aircraft dynamics becomes 
affected accordingly. 

4. Gust and downburst, which have an inevitable 
influence on the aircraft dynamics, do not 
follow a well-known pattern. 

Based on design performance outlined in (Hueschen, 
1986 a), (Hueschen, 1986 b) and (Heffley et al., 
1982), it is desired to have controllers to satisfy the 
following conditions: 

fpsh 20≤&  (*) 

deg20≤θ  (**) 
deg10≤α    (***) 

It is further assumed that glide mode begins at 500 ft 
AGL and finishes at 45 ft AGL, which is the start 
point of flare mode (Roskam, 1979) (Fig. 2). The 
flare mode continues until a smooth touch down is 
achieved. During a glide-slope mode, an automatic 
landing system guides the aircraft along a straight 
line with a constant slope (with a constant glide 
angle,γ ). Autopilot also attempts to prevent any 
changes in aircraft vertical and horizontal speeds, 
that is, during glide mode the sink rate is constant. 
As flare mode starts, autopilot starts to nose up the 
aircraft by changing the glide angle to prepare 
aircraft for a smooth touchdown. The trajectory of 
aircraft during this mode is estimated by an 
exponential function. Through this mode the sink rate 
is reduced to the desired value of -1.5 fps. A 
longitudinal control surface such as elevator in 
addition to the throttle is the usual control during 
these modes. 
 
 

4. AIRCRAFT EQUATIONS OF MOTION AND 
TURBULANCE MODEL 



     

 
In this work, 3-DOF equations of motion in the 
vertical plane known as longitudinal dynamics have 
been used to design the controller, however, the 
procedure is very well extendable to a complete 6-
DOF equations of motion. Based on (Roskam, 1979), 
these equations are given by (1) through (9). 
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The initial conditions are assumed as: 
u(0)=w(0)=q(0)= )0(θ =0   (7) 

h(0)=500 ft, x(0)=h(0)/tg 0γ    (8) 

0U)0(x =&    (9) 
Wind disturbance, which are shown by (ug, wg) 
consists of two components: constant velocity (ugc, 0) 
and turbulence (ug1,wg). It is further assumed that the 
constant velocity component exists only in the 
horizontal direction, given by (10), 
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Here u0 is the wind speed at altitude 510 ft and its 
typical value is 20 ft/sec. Turbulence is represented 
by (Iiguni et al., 1998).  

ug=ug1+ugc   (11) 
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And N1 and N2 are the Gaussian Random Noises 
with mean zero and different variances. In this 
approach means, wind patterns with different 
velocities and intensities can be generated.   
 
 

5. AUTOLAND CONTROLLER DESIGN 
 
As previously mentioned, a conventional PID 
controller, a modern neuro-controller and also a 
hybrid neuro-PID controller are designed to show the 
effectiveness of a hybrid system. To design a PID 

controller to train the Neuro-controller, longitudinal 
controls are throttle and elevator. Throttle is used in 
such a way that the aircraft speed during landing 
phase remains constant (Iiguni ET AL., 1998). So: 

dtuuKuuKT cTTcT )()(
 t
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−+−= ∫ω    

(19) 
In this case: uc= 0, kT= 3, wT= 0.1.   
The function of elevator is to control the pitch angle 
and pitch rate during landing phase, so:  

qKKE qc −−= )( θθθ    (20) 

And it is further assumed that, the desired pitch angle 

is a function of error in h and
⋅

h , so 
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Where  
 Kh=0.3,  Wh=0.1, 3.0Kh =&  
At Glide mode: 3=θK ,    Kq=3,  0p =θ  
At Flare mode: 12=θK ,   Kq=6.0,  0698.0=pθ  
The PID controller gains are estimated by applying 
the Linear Matrix Inequality (LMI) method, which is 
normally used to design PID controllers for MIMO 
systems. This method guarantees the stability of the 
designed system (Zheng et al., 2002). However, to 
achieve the desired performance one needs to 
optimize the gains through a trial and error process. 
hc and ch&  for each mode are obtained from their 
trajectories in glide and flare modes. As we know in 
glide mode the aircraft moves along a constant slope 
path characterized by (22):  

0c0 h           γγ tgx
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(22) 

At the flare mode the controller is applied to aircraft 
so that h&  is reduced smoothly to a desired value of -
1.5 fps. It is assumed that the flare mode begins at 
t=t0 and h0f=h(t0)=45 ft and it ends at the main gear 
touch down point where t=T and h(T)=0, then: 
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Where  
sec)/(5.1)( fthhTD −== τ&&    (24) 

)/()]([ 000 Thhtxh && −−=τ    (25) 

Results of different simulations conducted by the 
authors show that setting the throttle command to 
zero results in much better trajectories. Therefore, the 
rest of the simulations, once the throttle setting was 
selected it was treated as a constant throughout the 
simulation. 
 
 

6. NEURO-CONTROLLER DESIGN 
 
One neural network is designed for Elevator control. 
As previously mentioned the outputs of PID 
controller are used to train the neural network. The 
neural network used for Elevator control is a Multi 
Layer Perceptron (MLP) with the name of 
elevatornet, which has 3 layers and 4 inputs ( q,θ , h 

and h& ). The output of elevatornet is the elevator 



     

setting. The hidden layer has 7 neurons (N4,7,1).  In 
this neural network, tangent-sigmoid function is used 
in input and hidden layers and pure-linear function is 
used in output layers. To train the network classical 
error back propagation method (Levenberg-
Marquardt back propagation) is used. This method 
updates weight and bias values according to 
Levenberg-Marquardt optimization (Demuth et al, 
2000). 
 
 
7. HYBRID NEURO-PID CONTROLLER DESIGN 
 
To achieve a better performance in the presence of 
very strong winds and gusts a new controller has 
been proposed. In this controller inner loop that 
provides stability of the system, is designed with the 
aid of classic methods (such as root locus plot), in 
other words, according to equations for elevator 
setting (20), we tune θK  and Kq by classical 

methods. The outer loop ( cθ ) is estimated by a type 
of neural networks named General Regression 
Neural Networks (GRNN). A GRNN is often used 
for function approximation and has a radial basis 
layer as it hidden layer and a special linear layer as 
its output layer (Demuth et al, 2000). 
 
 
8. CASE STUDIES AND SIMULATION RESULTS 
 
To train the networks, the M-files and Neural 
Networks Toolbox (Demuth et al, 2000) of Matlab 
software have been used, and to simulate the system, 
Simulink Toolbox (Simulink Toolbox User’s Guide, 
2000) of Matlab software has been used; also, 
suitable links between the M-files and Simulink 
environment have been provided. The initial 
conditions for all of the aforementioned controllers 
have been introduced in Equations (7) to (9). 
According to FAR 25 Federal Aviation 
Administration regulations (FAA AC20-57A, 1971), 
environmental conditions considered in the 
determination of dispersion limits are: headwinds up 
to 25 knots (42.23 fps); tailwinds up to 10 knots 
(16.9 fps). The simulation result of the designed 
hybrid controller was found to be robust enough to 
properly handle all of the imposed turbulences 
proposed by the FAA in landing phase of flight. 
Fig. 3 to 6, show the horizontal and vertical 
components of Strong and Very Strong winds applied 
to the controllers. Simulation results have been 
presented separately for the Strong wind and Very 
Strong wind. The profiles of strong wind are 
depicted in Fig. 3 and 4. And the simulation results 
for this wind have been shown in Fig. 7 to 12. 
Followed and commanded trajectories of aircraft for 
all of three controllers are shown in Fig. 7 to 9. It is 
observed that for all of controllers have acceptable 
performances. The sink rate variations for the 
controllers are shown in Fig. 10 to 12, which all of 
them satisfy the requested performance (*). It is 
observed that the variations of angles of attack for all 
of the cases are in the acceptable range, with regard 
to angle of attack limitation (Stall angle, sα ) (***). 

Consequently, all of the controllers- PID, Neuro, and 
Neuro-PID controller- have good capabilities to 
guide the aircraft throughout the landing phase in 
presence of Strong wind.  
Horizontal and vertical components of Very Strong 
wind have been depicted in Fig. 5 and 6. Comparing 
these figures with JFK Airport Downburst, Fig. 1, it 
is seen that the wind named Very Strong wind is 
stronger than the JFK Airport Downburst. Fig. 13 to 
18, show simulation results of the controllers in 
presence of Very Strong wind. Followed and 
commanded trajectories for the controllers, in 
presence of Very Strong wind, have been shown in 
Fig. 13 to 15. Fig. 13 shows that the classic controller 
follows the commanded trajectory well, but 
according to Fig. 14, the neuro controller does not 
have an acceptable behaviour, while following the 
commanded trajectory. Fig. 15 shows that the neuro-
PID controller has a relative better performance. 
Desired and actual sink rates for the controllers have 
been shown in Fig. 16 to 18. Actual sink rate of 
classic controller (Fig. 16) exceeds -20 fps and does 
not satisfy the conditions (*). The neuro controller 
also does not satisfy the limitations in this case (Fig. 
17). Sink rate of the aircraft with hybrid neuro-PID 
controller (Fig. 18) in presence of Very Strong wind 
does not exceed -20 fps limitation and satisfies the 
conditions (*). Variation of angle of attack with 
neuro controller is not acceptable.  Angle of attack of 
the aircraft in presence of Very Strong wind, with 
applying the PID and neuro-PID controllers does not 
exceed the stall angle limitation (***), during the 
landing phase of flight, but neuro-PID controller has 
a relative better performance. The aforementioned 
results have been shown in Table 1: 
Table 1: Performance of the controllers in presence 

of different wind patterns 
            controller 
wind pattern 

PID 
Controller 

Neuro 
Controller 

Neuro-PID 
Controller 

Strong  Acceptable Acceptable Acceptable 
Very Strong  Unacceptable Unacceptable Acceptable 
 
 

9. DISCUSSION AND CONCLUSION 
 
Three different types of controllers (Classic, Neuro, 
and Neuro-PID) have been designed and simulated. 
To evaluate performance of the controllers, two 
different wind patterns have been introduced, named 
Strong and Very Strong winds. Strong wind is 
weaker than the JFK Downburst and Very Strong 
wind is stronger than it. Results show that 
performance of controllers in presence of Strong 
wind is acceptable. But, only the hybrid neuro-PID 
controller behaves well in presence of Very Strong 
wind pattern. So only with applying the hybrid 
neuro-PID controller we can extend the flight 
envelop of the aircraft. 
Complexity of the controllers could be discussed 
from three different aspects: 1- Number of required 
sensors. 2- Amount of required computations and 
calculations. 3- Required switching.  
Block diagrams of the PID, neuro and neuro-PID 
controllers have been shown consequently in Fig. 18 
to 21. As it is obvious, handhq &,,θ  are the inputs of 



     

the controllers, so the number of required sensors for 
all of the controllers is equal. From the second point 
of view, the neuro-PID controller because of so 
many processing units of the GRNN network, 
performs a great amount of calculations, but this is 
not a negative point for the neuro-PID controller, 
since the overall time which is needed to generate the 
trajectory by the neuro-PID controller in comparison 
with the time which is needed by the aircraft to fulfil 
its mission, is negligible and this set of calculations 
can be done with the aid of new computers. From the 
third point of view, the only controller which does 
not need any switching is neuro controller.     
It can be seen from the previous section that the PID 
controller needs different gains in glide slope and 
flare modes and this causes switching between these 
two modes. This switching generates some problems 
with the controller. For example; the switching needs 
the exact information of sensors to switch between 
these two modes and it is obvious that the PID 
controller needs precise measurements of sensors 
near the run way, while it is known that the sensors 
have some errors. In addition, switching also 
generates some noises in electronic systems of 
controller. 
On the other hand, the neuro-controller has a good 
ability to estimate the system parameters in a 
condition that had not been trained before, and to 
extend the performance range of the system. In other 
words by this technique the flight envelope of the 
aircraft can be extended in a wide range and this 
make the landing system operate more safely in 
presence of sudden and unpredicted conditions and it 
is possible to decrease the number of flight tests. In 
overall, a mixed Neuro-Classic controller has a better 
performance in comparison with the controllers 
which are based only on classic methods or only on 
neural networks methods.   
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Fig. 7: Trajectory for PID controller with 
Strong wind 
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Fig. 9: Trajectory for Neuro-PID controller 
with Strong wind 
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Fig. 11: Sink rate variations for Neuro controller 
with Strong wind
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Fig. 1: JFK Airport Downburst 

Fig. 2: Typical trajectory in landing 

Fig. 3: Strong wind pattern, Variation 
of ug with h, N=200 

Fig. 4: Strong wind Pattern, Variation 
of wg with h, N=100 

0 10 20 30 40 50 60
-40

-30

-20

-10

0

10

20

30

t(sec)

w
g(ft

/s
ec

)

N=100

0 10 20 30 40 50 60
-70

-60

-50

-40

-30

-20

-10

0

10

20

30
N=200

t(sec)

u g(ft
/s

ec
)

25 Knots - Headwind limit with regards to FAR 25 (AC 20-57 A) 

10 Knots - Tailwind limit with regards to FAR 25 (AC 20-57 A) 

0 5 10 15 20 25 30 35 40 45 50 55

-100

-50 

 0

50  

100 

N=300, ugc=30(ft/sec)

t(sec)

u g(ft
/s

ec
)

 10 knots -Tailwind Limit with Regard to FAR 25 (AC 20-57A)

 25 knots -Headwind Limit with Regard to FAR 25 (AC 20-57A)

Fig. 5: Very Strong wind pattern, Variation 
of ug with h, N=300 



     

 

 

 

Aircraft E

cθ

q,θ  

ch  
ch&

Fig. 21: Neuro-PID Controller block diagram (with 
training procedure) 

Neural Network Estimator (GRNN) 

hh &,

cθ  

cθ

+

-

hhq &,,,θ

Fig. 18: Sink rate variations for Neuro-PID 
controller with Very Strong wind 

0 10 20 30 40 50 60
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

t(sec)

h do
t(ft

/s
ec

) Actual Sink Rate
Command Sink Rate

Fig. 17: Sink rate variations for Neuro controller 
with Very Strong wind 
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Fig. 19: PID Controller block diagram 
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Fig. 20: Neuro Controller block diagram (with 
training procedure) 
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Fig. 12: Sink rate variations for Neuro-PID 
controller with Strong wind 
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Fig. 13: Trajectory for PID controller with Very 
Strong wind 

-10000 -8000 -6000 -4000 -2000 0 2000 4000
-100

0

100

200

300

400

500

X(ft)

h,
h c(ft

)

Followed Trajectory
Desired Trajectory

Fig. 14: Trajectory for Neuro controller with Very 
Strong wind 

Fig. 15: Trajectory for Neuro-PID controller with 
Very Strong wind 
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Fig. 16: Sink rate variations for PID controller 
with Very Strong wind 
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