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1 Introdction

Greenhouses are building structures that allow
the creation of an indoor microclimate for crop
development, protecting it from adverse outdoor
conditions. Moreover this microclimate can be
modified by artificial actuations such as heat-
ing, ventilation in order to provide the best envi-
ronmental conditions. In this sense, several re-
searchers used the optimal control and predic-
tive control to develop algorithms which decide
about heating and ventilation and produce tem-
perature, humidity and carbon dioxide control
actions (ref).

In this paper, we are interested in the applica-
tion of fuzzy control to this problem (references).
The standard additive model (SAM) theorem ex-
tended to a class of nonlinear dynamical systems
is used to represent the Exact Fuzzy model (TSK)
of greenhouse, which is a nonlinear dynamical
system ( ref.).

The nonlinear plant is firstly approximated by
a Takagi-Sugeno type fuzzy model, where the lo-
cal dynamics in different state space regions are
represented by linear models. The overall model
of the system is achieved by fuzzy ”blending” of
these linear models. In the control design, for
each local linear model, a linear feedback con-
trol is designed. The resulting controller, is again
a fuzzy blending of each of the individual linear
controller (refer).

The stability of the system is checked by suffi-
cient conditions which call upon the tools LMIs
(Linear Matrix Inequalities) (ref).

This paper is presented as follows: In section
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2, one presents a dynamic model which describes
the thermal behavior of the greenhouse. The
TSK Fuzzy modeling of a nonlinear dynamic
system, stability of the modeled system and con-
trolled closed loop system and the SAM theorem
extended to a class of nonlinear dynamic systems
are given in section 3. Exact Fuzzy model to the
greenhouse is given In section 4. Simulation re-
sults and conclusions are given in sections 5 and
6.

2 Problem Position

The model presented here simulates the dynam-
ics of the climat of an empty greenhouse. In
the greenhouse climate model used here, the
state of greenhouse climate is represented by one
variable namely, inside air temperature. The
greenhouse climate model describes the dynamic
behaviour of the state variables with the follow-
ing differential equation (ref):

2.1 Energy balance

The energy fluxes affecting the greenhouse
air are due to ventilation, Ev ,heating,Eh,and to
convection the cover,Ec, and the floor,Ef . This
balance writes(symbols are detailed in table I):

�a:Ca:
Vg
Ag

dTa
dt

= Ev +Eh +Ec +Ef +Es

Ev = �aCaV (Ta � T0)

Ec = hc
Ac

Ag
(Tc � Ta)

Ef = hf (Tf � Ta)

Es = �sS0 (1)



The variables that appear in this balance is the
heating supply,Eh. It is considered that the re-
newal rate between the air intern of the green-
house and the air extern remains constant, V =
cts.

3 TSK Fuzzy Modeling

In this paper, we restrict ourselves to the
regulation of the temperature by using equation
(1) The corresponding fuzzy system is of the
following form:
Rule i; IF x1(t) is Mi1and x2(t) is Mi2 : : : and
xn(t) is Min THEN

_X(t) = AiX(t) +Biu(t) (2)

Where,

XT = [x1; x2; : : : xn]

uT = [u1; u2; : : : un]

for i = 1; 2; : : : r. Where r is the total number of
IF-THEN rules. Mij is a fuzzy set.
Given X, u, the final output of the fuzzy system
is inferred as

_X =

Pr
i=1 wi(X) fAiX +BiugPr

i=1wi(X)
(3)

Where,

wi(X) =

nY
j=1

Mij(xj(t))

and

wi(X) � 0;
rX

i=1

wi(X) > 0

for all t and i = 1; 2; : : : r: Mij(xj(t)) is the
grade of membership of xj(t) in Mij . Each lin-
ear component

_X(t) =

rX
i=1

hi(X)AiX(t) +Biu(t) (4)

Where,

hi(X) =
wi(X)Pr
j=1wj(X)

rX
i=1

hi(X) = 1

and hi(X) � 0 for i = 1; 2; : : : ; r:

This means that the overall system in (4)is a con-
vex combination of ’r’ fuzzy subsystems.

3.1 Stability of the controlled
continuous-time system in closed-
loop

We use the concept of PDC [references] and
optimality results using local concept approach,
to design stable and optimal fuzzy controller for
fuzzy system in (4). The fuzzy controller shares
the same fuzzy sets with the fuzzy model. For
each rule, we can use linear control design.
Rule i;
IF x1(t) isMi1and x2(t) is Mi2 : : : and xn(t) is
Min THEN

ui(t) = �FiX(t)

Where, i = 1; 2; : : : r.
Hence, the fuzzy controller is:

u(t) = �

Pr
i=1wi(X)FiX(t)Pr

i=1 wi(X)

= �
rX

i=1

hi(X)FiX(t) (5)

The overall controller (5) is again a convex
combination of individual control laws. Even
though, the individual control laws is linear, the
overall controller is nonlinear. Substituting (5) in
(3), we have

_X =

Pr
i=1

Pr
j=1wi(X)wj(X)[Ai �BiFj ]X(t)Pr

i=1

Pr
j=1wi(X)wj(X)

(6)

This is a convex sum of fuzzy subsystems [Ai �
BiFj ] where i = 1; 2; : : : ; ret j = 1; 2; : : : ; r.
Hence, if all these r2subsystems in (6) are stable,
then for continuous-time case, the overall con-
trolled system is stable. Alternately, the above
closed-loop system is stable. Alternately, the
above closed-loop system is stable if there exists
a common positive definite matrix, P such that:

(Ai �BiF
T
j )P + P (Ai �BiFj) < 0;

i = 1; 2; : : : ; r; j = 1; 2; : : : ; r: (7)



4 Exact fuzzy modeling of the
Greenhouse

The equation (1) can be written in the follow-
ing form:

dTa
dt

= [a1(
T0
Ta

� 1) + a2(
Tc
Ta

� 1) (8)

+a3(
Tf
Ta

� 1) + a4
S0
Ta

]Ta + a5Eh

dTa
dt

= [
1

Ta
(a1T0 + a2Tc + a3Tf + a4S0) (9)

�(a1 + a2 + a3)]Ta + a5Eh

dTa
dt

= f(T0; Tc; Tf ; S0)Ta + a5Eh (10)

Where:

a1 = V
Ag

Vg

a2 =
hcAc

�aCaVg

a3 =
Aghf
�aCaVg

a4 =
�sAg

�aCaVg

a5 =
Ag

�aCaVg

T0; Tc; Tf ; S0 are assumed to be available by us-
ing adequate sensors at each sampling time. The
general form of this total system is

_X = A(X)X +B(X)u (11)

Where X = Ta, B(X) = B = a5 and Bi = B
for A(:) = [f(Ta)] i = 1; 2.
There is one scalar valued nonlinear auxiliary
function of state inside the system matrix A(.).

4.1 Permise variable for Exact fuzzy
modeling

By using the theorem SAM, the function
f(.) requires 2 membership functions to represent
it exactly in a predetermined domain, knowing
their bounds in that domain. And these member-
ship functions are represented as:

Mj1 =
� � f(Ta)

� � �

Mj2 = 1�Mj1

for j = 1; 2:
Where,

� = max(f(Ta)) and � = min(f(Ta))

We need 21 = 2 rules to represent this nonlinear
system. Now the exact fuzzy model of the system
can be expressed using the membership functions
[rfere]:
Rule:1 IF f(.) is M11 THEN

_X = A1X +Bu; A1 = [�]

Rule:2 IF f(.) is M21 THEN

_X = A2X +Bu; A2 = [�]

The corresponding convex weighting coeffi-
cients can be written using the results in [refer]:

h1 =
M11

M11 +M21

h2 =
M21

M11 +M21

Thus the exact Fuzzy model of nonlinear system
above is

_X =
X
i=1

2hi(X)[AiX +Bu] (12)

5 LMI Approach

For each of the subsystem in (12),the Linear
Matrix Inequalities is used to find simultaneously
the common matrix (P > 0) to the 2 subsystems
and the regulators (Fi), as:

(Ai �BFi)
TP + P (Ai �BFi) < 0

P > 0

let us use the well known change of variables
P�1 = X and Yi = FiX and by multiplying
each side of the above inequality by X; we ob-
tain:

(LMI) :

8<
:

X > 0
XAT

i +AiX �BiYi � Y T
i B

T < 0;
Fi = YiX

�1



6 Simulation Results

For simulation purpose, we wishe to reg-
ulate the temperature of air inside a greenhouse
of dimensions Ag = 15m2; Ac = 60:5m2;
hg = 4m , around a temperature of 24C , the
initial temperature of the greenhouse is 14C , the
various temperatures used here are not realistic
measurements, thus for one journey of Novem-
ber in Marrakech we have:

9C � Tc � 20C

14C � Tf � 25:5C

8C � T0 � 18C

0w=m2 � S0 � 300w=m2

10C � Ta � 33C

(13)

In equation (11), dTa
dt

= _X is expressed in
K=h.

In this domain, we have the following bounds
for the auxiliary function:

� = �577:15 � = �60:237

The simulation results for the desired inside
air temperature in greenhouse Ta = 24C , and
the fuzzy control are presented in Figure1 and
Figure2. The resolution of the LMI leads to the
following,

P = 0:18182; F1 = �770:78 ; F2 = �79:848
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Table List of symbols, values and units

Symbol Meaning Value/unit
Ac Cover area of the greenhouse m2

7 Conclusion
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