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Abstract: The work presented expands upon previous research into the uses of 
fuzzy gain scheduling (FGS). It combines FGS with the robust control design 
methodology, quantitative feedback theory (QFT).  By combining FGS and QFT the 
advantages from both methodologies are achieved, namely the resulting controller 
synthesis methodology provides design transparency, because of QFT, and does not 
suffer from over design or from rapid open-loop variations, due to the FGS. This 
hybrid controller may be utilised to control a class of non-linear systems, where the 
plant may be expressed as a linear plant model with time varying parameters. The 
methodology for designing this hybrid controller is outlined by means of example. 
The example also experimentally compares a FGS with a simple QFT controller. 
The simulation results show that the hybrid FGS controller results in improved 
control over the plant, for little extra design effort. 
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1. INTRODUCTION 
 

Fuzzy gain scheduling is a control method which 

alters its parameters on-line to counter the 

effects of changes that occur in a plant. 

 

It has been demonstrated that fuzzy gain 

scheduling (FGS) can be used to successfully 

control many systems [1, 2, 3, 4, 5, 6]. 

Experiments conducted, comparing FGS with 

other control methodologies, show that FGS 

often results in improved system control, 

reducing both control energy and command 

chatter [5]. In many cases the performance of a 

FGS controller is similar to that of adaptive 

learning algorithms. FGS, however, requires a 

far simpler design and architecture. 

 

The majority of research performed on the 

advantages of FGS has been in conjunction with 

PID control [3, 6]. 

 

This work expands upon previous research by 

combining FGS with more general transfer 

functions to control a class of non-linear plants. 

FGS is used to reduce the variations and 

uncertainty in the non-linear plant. By doing so, 

the effects of those non-linearities are reduced. 

 

QFT, originally proposed by Horowitz [7], has 

been shown to provide more robust control than 

most other linear controller design 

methodologies [8, 9, 10], as it directly addresses 

the reduction of plant uncertainty in an optimum 

manner. Thus, QFT is used in conjunction with 

FGS throughout this paper. 

 



2. BACKGROUND TO FUZZY GAIN 
SCHEDULING 

 

To use FGS it is essential to understand its two 

components, namely gain scheduling and fuzzy 

control. 

 

2.1. Gain Scheduling 
 
Gain scheduling (GS) [11, 12, 13] is a method of 

varying a linear controller so as to adapt its 

parameters as the plant’s states change. This is 

useful in the control of plants where changing 

parameters can be measured. Most commonly, 

the parameters range is separated into several 

regions of operation. For each of these regions a 

linear controller is designed to provide 

satisfactory control within that region. 

 

Whilst the plant states remain in a specific 

region, the linear controller, associated with that 

region, is utilised to control the plant. As the 

parameter changes, moving the plant into a 

different operating region, the control is 

switched to the linear controller associated with 

the new region. 

 
Most gain scheduling controllers change 

controller’s parameters where the controller’s 

structure remains constant. 

 
The sudden switching of parameters often leads 

to unsmooth transitions and, in some cases, limit 

cycles. If, instead of suddenly switching from 

one value to another, the controller’s 

parameters’ values were to vary in a smooth 

manner, these unsmooth transitions can be 

reduced or even eliminated. 

 
Figure 1: Graph demonstrating a crisp 

relationship between plant state and 
controller  

 

 
Figure 2: Graph demonstrating a smoothed 

relationship between plant state and 
controller  

 

 

Consider the graphs, in figure 1 and figure 2, of 

parameter value versus plant state. Figure 1 

shows a crisp relationship between a plant’s 

state, x1, and a controller’s parameter, param. 

Figure 2, shows a smoothed example of the 

relationship. Due to the fact that no sudden 

changes occur in the system model, this 

smoothed relationship is likely to reduce any 

unsmooth transitions that may exist as the plant 

moves from operating region to another. 

 

It should be noticed that the crisp relationship in 

Figure 1 is easy to implement as it requires the 

following logic: 

If (x1 < 3) then param is 4 
If (x1 ≥ 3) and (x1 < 7) then param is 2.5 
If (x1  ≥ 7) then param is 1 



2.2. Fuzzy Control 
 

Originally proposed by Lotfi Zadeh in 1965, 

fuzzy logic is a method of classifying a quantity 

by stating that it is neither “Big” nor “Small” but 

to assign a value to the “Bigness” or 

“Smallness” of the quantity. 

 

Fuzzy logic was later expanded into a decision 

making process [15] which gave rise to fuzzy 

control. 

 

In a fuzzy controller, inputs are fuzzified into 

values denoting the certainty that the input 

belongs to a certain fuzzy set. A rule base, 

consisting of “IF premise THEN consequence" 

rules, is then applied to these fuzzified inputs. 

The degree of satisfaction of the premise then 

denotes the “on-ness” of each rule, known as the 

Degree of Satisfaction (DoS). The consequence 

of each of the rules is then combined in a 

weighted manner according to the DoS of each 

rule. This produces an output for the fuzzy 

controller, and is known as defuzzification. 

 

Fuzzy logic may be viewed as a system to 

interpolate between values on a curve where 

only a few points have been defined on that 

curve. 

 

3. COMBINING FUZZY CONTROL AND 
GAIN SCHEDULING 

 

From section 2.1 it can be seen that GS allows 

for an easy method to design non-linear 

controllers to control plants with changing 

parameters. Furthermore, the governing logic of 

a crisp GS surface may be described by “IF 

premise THEN consequence” rules. This crisp 

surface is easy to generate, but a smoothed 

surface provides smoother control in the 

presence of changing operating regions. 

Furthermore, from section 2.2, fuzzy logic may 

be viewed as method of interpolating a surface 

between defined points on a curve. Thus, it 

follows that fuzzy logic may be utilised to 

govern GS. The result is known as fuzzy gain 

scheduling (FGS). 

 

GS is utilised to design crisp surfaces which will 

control the plant adequately. Fuzzy logic is then 

utilised to smooth the crisp surface. The “IF 

premise THEN consequence” rules governing 

the GS surface constitute the rule base for the 

fuzzy controller, as well as defining the inputs 

and outputs of the fuzzy logic. 

 

Using fuzzy logic and GS allows for the easy 

design of smooth gain scheduling surfaces. The 

structure of a hybrid FGS controller is shown in 

figure 3. This hybrid controller consists of two 

layers, a FGS layer and a G(s) controller layer. 

The bottom layer, the G(s) controller layer, is 

responsible for providing the actuator signal for 

the plant. The FGS determines the values of the 

parameters of the controller in the bottom layer. 

 

 
Figure 3: Structure of a control loop using a 

hybrid FGS controller with unity gain 
feedback. 

 



The FGS layer may depend on either full or 

partial state feedback from the plant. Feeding 

back more states allows the controller to have 

greater knowledge of the plant. In turn, this 

allows the controller to be adapted to provide 

more effective control over the plant, by 

reducing any over design required.  

 

4. THE USE OF FGS WITH QFT FOR 
CONTROLLING A PLANT WITH A 
VARYING PARAMETER: A CASE 

STUDY 
 

To outline the advantages of FGS, a comparative 

study follows between QFT and FGS. Consider 

the plant described by the uncertain function: 
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where y(t) is the plant output, u(t) the plant input 

and a some measurable plant parameter 

restricted to between 1 and 5. Taking the 

Laplace transform of equation 1 gives: 
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For the controller structure shown in figure 3, 

assume the following one degree-of-freedom 

closed-loop specifications: 

a) There must be no steady-state error for a step 

input. 

b) The step response must have no more than 

15% overshoot. 

c) The step response rise time must be between 

0.5 seconds and 5 seconds. 

 

These specifications are non-astringent and so, 

may be approximated by a direct mapping to the 

frequency bounds. Many closed-loop systems 

can be approximated by second order prototypes 

up to the phase-crossover frequency [8, 9]. 

Therefore, the time domain specifications were 

translated to frequency domain bounds using 

second-order prototype models. 

 

Specification (a) gives the required DC gain of 

the closed-loop system. To achieve zero steady 

state error, the gain must be 1 at DC. The 

damping ratio is given by (b) as 0.6 and the 

undamped natural frequency is given by (c) as 

lying between 0.8 and 4. 

 

These translated specifications result in the 

following upper and lower specification bounds: 
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where T(s) = )(1
)(
sL

sL
+  and L(s) = G(s)P(s) for 

controller G(s) and plant P(s). 

 

4.1. Design of a Simple QFT Controller 
 

A simple QFT controller was designed for the 

plant such that the specifications would be met. 

The nominal plant chosen for the design of the 

QFT controller was the case where a = 1: 
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Figure 4: Nichols chart showing the nominal 

loop transmission function, L0(s), with the 
lower nominal loop transmission bounds 
superimposed. 

 

 

The one degree-of-freedom control strategy 

produces closed regions on the Nichols Chart 

wherein the open-loop system must lie. To 

ensure that the Nichols Chart remains 

uncluttered, only the lower nominal loop 

transmission bounds have be superimposed onto 

the plot. This is justified by the fact that the 

controller was designed to have minimal gain. 

 

The QFT controller was then designed to meet 

the specifications, i.e. 
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This controller is sub-optimal in that the phase 

margin can be decreased by 400. This over 

design contributes to less peaking in the closed-

loop output signal and increased bandwidth, 

which, for this demonstration, is not considered 

important. 

 

4.2. Design of the Hybrid FGS Controller 
 

Using the form of the QFT controller, a hybrid 

FGS controller was designed. The form of the 

FGS controller was thus: 
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where Kc, Td, and Ti are the controller parameters 

that are varied by the FGS layer. 

 

To design the gain scheduling component of the 

FGS layer, the plant was considered at several 

values of the parameter a. The values chosen 

where 1 and 5, as these are the extremes of the 

parameters range, as well as 2.3, approximately 

the geometric mean of the range of a. 

 

A controller of the same parametric structure as 

that of equation 6 was then designed for each of 

the plant models at these values of a, using an 

iterative, “by-hand”, refinement approach. These 

controllers where designed such that the closed-

loop transfer function sat approximately mid-

way between the upper and lower frequency 

specifications as defined in equation 3. This 

resulted in the controller parameters given in 

table 1. 

 

 

Table 1: Table relating a to Kc, Td and Ti. 
 Value of a 
 1 2.3 5 
Kc 0.6 0.6 0.5 
Td 1 2 3 
Ti .1 .157 .33 

 



 

4.2.1. Designing the Fuzzy Rule Base 
 

From table 1, the following fuzzy rule base was 

obtained: 

 

1. If a = 1 then Kc = 0.6, Td = 1 and Ti = 0.1. 

2. If a = 2.3 then Kc = 0.6, Td = 2 and Ti = 0.157. 

3. If a = 5 then Kc = 0.5, Td = 3 and Ti = 0.333. 

 

4.2.2. Designing the Input Fuzzification 
Membership Functions 

 

The input to the fuzzy layer was identified as the 

measurable plant parameter a. Since the 

controllers were designed using three values of 

a, these same three values form the basis for the 

input fuzzification. These values where 1, 2.3 

and 5. Thus the three membership functions 

(MF), each chosen to be triangular, are named 

"1", "2.3" and "5" each peaking to a certainty of 

1 at the values 1, 2.3 and 5 respectively. 

Triangular MFs were chosen since they are both 

easy to design and not computationally 

intensive. 

 

4.2.3. Designing the Output Defuzzification 
Membership Functions 

 

Since Kc takes on the values 0.6 and 0.5, two 

output MFs where defined named "0.6" and 

"0.5". Similarly, for Td three output MFs were 

defined, namely "3", "2" and "1". For Ti again 

three MFs were used, named "0.333", "0.157" 

and "0.1". 

 

The FGS surfaces obtained are shown in figures 

5 to 7. 

 

 
 
Figure 5: Fuzzy surface relating a to Kc. 
 

 
 
Figure 6: Fuzzy surface relating a to Td. 
 

 
 

Figure 7: Fuzzy surface relating a to Ti. 

 

 

4.3. Results of the Experiment 
 

The resulting closed-loop non-linear system was 

simulated using Simulink. To ensure that the 

plant parameter a varies rapidly, a was varied as 

fast and with the same amplitude as the plant 

output, y(t), i.e. a(t) = y(t). This ensures that the 

variation of a is fast in comparison to the 

bandwidth of the system. 

a 

a 

a 



 

 
Figure 8: Simulated output of the experiment. 

RMS power of actuation signal [QFT]: 20.30 
RMS power of actuation signal [FGS]:   8.38 

 

 

The results of the simulation are shown in figure 

8. In addition to showing the output of the plant, 

the RMS actuator power required to control the 

system is also shown. This value for the power 

was obtained by calculating the RMS value of 

the actuator signal. This value is merely a 

comparative measure, not absolute, due to the 

nature of the simulation. 

 

The most significant result from this experiment 

is that the hybrid FGS controller meets the 

specifications whilst the QFT controller does not 

due to the large over shoot encountered at 5 

seconds. This overshoot may initially seem 

surprising, as one may say the QFT controller 

has been designed to control the plant for any 

plant parameter values, within the given range. 

However, an important distinction must be 

drawn. Correctly stated, this assertion would be 

that the QFT controller has been designed to 

control the plant for slowly changing (with 

respect to the plant bandwidth) plant parameter 

values, within the given range [8]. 

 

The effects of changing plant parameters are 

largely countered in the FGS controller by 

changing the controller’s parameters at the same 

rate that a is changing. Doing so compensates 

for changes in the plant parameters such that the 

effective open-loop transmission function's 

parameters remain approximately unchanged. 

By doing so it is possible to reduce any effects 

of changing plant parameters. 

 

It can also be noticed that hybrid FGS requires 

less actuator power than the QFT controller. 

This is generally true of a hybrid FGS controller 

as the gain-bandwidth product of controller is 

reduced. The risk of saturating the actuation 

signal is also decreased due to the reduced gain-

bandwidth product of the controller. 

 

5. COMMENTS ON THE USE OF FGS TO 
CONTROL NON-LINEAR PLANTS 

 

From the above case study it has been shown 

that QFT controller does not account for rapidly 

varying parameters.  

 

FGS allows for non-linearities to be easily 

designed for by treating the effects of the non-

linearities as uncertainty in the plant model. To 

do so requires the plant and non-linearities 

present to conform to a form, such that the non-

linearities can be interpreted as parametric 

uncertainty. It is here proposed that this 

requirement dictates that the plant must conform 

to the form of a linear system with time varying 

parameters. 

 



5.1.1. Advantages of Utilising FGS as a Control 
Methodology 

 

FGS may be utilised in conjunction with other 

non-linear control techniques. For example, the 

equivalent linear time invariant (ELTI) method 

[8], may be utilised to design a linear controller 

for a non-linear plant. Should the plant templates 

become too large to design effective controllers, 

FGS may be used. FGS would allow the plant 

templates to be broken into several smaller 

templates, and a controller to be designed for 

each of the reduced templates. 

 

It is generally true that a hybrid FGS controller 

requires less actuation power, and suffers from 

less actuation signal saturation than a linear 

controller, due to the decreased gain-bandwidth 

product of the FGS compensated controller. 

 

5.1.2. Disadvantages of FGS 
 

It must however be noted that, presently, there is 

no design or analysis method which will 

guarantee stability and specification adherence 

throughout the entire range of operation of the 

FGS compensated system. This is an area which 

requires future research. However, designing a 

FGS controller does provide a more transparent 

synthesis methodology than pure fuzzy control. 

 

Because the FGS layer only varies the 

parameters of the G(s) controllers, the form of 

these controllers must remain constant. If this is 

not so then poles (or zeros) must move towards 

infinity, or so as to cancel out the effects of other 

zeros (or poles). For example, consider the two 

controller equations: 
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It is evident that the controllers structures are not 

equal, however G2(s) can be interpreted as: 
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where λ → ∞. Therefore, the poles of G1(s) can 

move to the positions in G2(s) such that the pole 

at -2 moves to -5 and the pole at -12 moves 

toward -∞. It should be noted that the poles (or 

zeros) need not be constrained to move 

exclusively on the real axis. 

 

6. CONCLUSION 
 

It has been demonstrated that, assuming accurate 

measurement of plant parameters and states, 

fuzzy gain scheduling can provide adequate 

control for a plant with rapidly varying 

parameters. Thus, it is proposed that, FGS can 

be used for any system which is in the form of a 

linear system with parametric changes.  

 

It must be noted that FGS is not a universal 

panacea for all control problems but is merely 

another tool in the control engineer's toolbox. It 

is most useful when employed in conjunction 

with a robust controller synthesis technique. By 

combining FGS with QFT, the resulting non-

linear controller has distinct advantages over its 

linear counter part. The resulting controller 

synthesis methodology provides design 



transparency, due to the use of QFT, and does 

not suffer from over design or from rapid open-

loop variations, due to the FGS. 

 

The advantages of FGS may be summarised by 

the statements that FGS a) reduces the gain-

bandwidth product of a controller, thus reducing 

the power required to control the plant and the 

risk of saturation, and b) reduces changes in the 

open-loop system by countering the effects of 

changing plant parameters and so may improve 

specification conformance in transient regions. It 

is this second summarising statement which 

encapsulates the greatest benefit of FGS. 

 

This is an idealised scenario demonstrating the 

concept of FGS. Additional research must be 

conducted into the stability, robustness of the 

resulting system, as well as the effects of noise, 

disturbances, measurement lag, and computation 

time. 
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