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Abstract: The Horowitz and Wang approach to non plant modifying multiloop
(NPMM) QFT is revised, introducing as a design factor the high frequency
template length of the outer loop. This is a key issue, since it determines the
achievable noise reduction of the outer loops against the control effort of the inner
loops and thus a balance between both factors is highly desirable.
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1. INTRODUCTION

In this work, the previous approach on NPMM
QFT (Horowitz and Wang, 1979a; Horowitz
and Wang, 1979b), is revisited. Attention is
concentrated on the simplest multiloop plant
structure which contains the essential features of
those works (figure 1) in which there is only one
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Fig. 1. Plant structure.

internal sensor (and controller associated to it)

1 Partially supported by MCyT under project DPI2000-
1218-C04-03, no. 5101.

additional to the usual at the plant output, and
there are two parallel branches. Also following
(Horowitz and Wang, 1979a; Horowitz and Wang,
1979b) plants structure is restricted to Pij = kij

snij ,
kij ∈ [kijn

, kijx
], and the study is restricted to

the case in which the poles-zeros excess is the
same in both parallel branches, i.e., n21 = n11 +
n12. The second restriction has to do with the
future extension of the study to more general
plant structures, in which the trade-off between
inner branches will be also considered: different
poles-zeros excess allows no balancing between
branches. For simplicity, n21 = 2 and n11 = n12 =
1 will be used.

In section 2, the basic principles of the design
methodology proposed by Horowitz and Wang
are summarized and applied to a simple example.
Then, it is addressed an important choice of this
design methodology, the length of the (vertical)
plant template considered for the design of outer
the loop, which determines the noise reduction



achieved. In the original methodology, it is assumed
there is only one possibility. In sections 3 and 4, it
is shown how this choice is in fact a design factor
that the control engineer can use to trade-off
between outer loop noise reduction and inner loop
control effort, and the rules governing this trade-
off are studied. To do so, a simplified formulation
of the problem is introduced.

Finally, in section 5, it is presented a MATLAB�

based CACSD tool which lets the control engineer
interactively choose a certain template reduction
or specify an outer loop and check the effect on
noise reduction and inner loop control effort.

2. HW DESIGN METHODOLOGY

The design methodology used in (Horowitz and
Wang, 1979a; Horowitz and Wang, 1979b), Horowitz-
Wang design methodology, HW for short, is
the evolution of the ideas in (Horowitz, 1993;
Horowitz and Sidi, 1973) for the cascaded case.
Along this text, subscript 0 denotes nominal and,
for every plant, the nominal will be chosen at
the bottom of the (vertical) template, i.e., ∀ij,
kij0 = kijn

. The basic idea in both cases is that
an inner loop L120 = G12P120 can be used to
help an outer loop, L0 = G P0

1+L120
, L0 = GP0

for L120 = 0, with P0 = P210 + P110P120 , to cope
with the uncertainty of inner plants (P12). The
way to do this is the following. First it is designed
an outer loop which only deals with P21 and P11

uncertainty, i.e., a fixed value of P12 is assumed.
Then it is chosen an inner loop L120 which keeps
specifications on L0 satisfied despite the effect of
P12 uncertainty.

P12 fixed value, P12F
= k12F

s , is chosen in such
a way the (vertical) template length of P ′ =
P21 + P11P12F

, τF , is maximum. There are two
possibilities:

• case A: k21x

k21n
≥ k11x

k11n
; for which k12F

= k12n

• case B : k21x

k21n
≤ k11x

k11n
; for which k12F

= k12x

HW assume minimum phase P . It is also assumed
that P uncertainty is such that the control
problem is solvable with G12 = 0, i.e., the outer
loop is able to cope with P uncertainty by itself,
with no help from the inner loop.

The basic benefit obtained from the inner loop
help is the sensor noise effect reduction: the
smaller template of P ′, compared to P , leads
to lower height of the universal high frequency
boundary (UHFB), which lets the outer loop reach
its cut-off frequency, ωcu, at lower frequencies.
This effect will be shown by means of a simple
example: kij ∈ [10, 100], ij = 11, 12, 21. The
specifications are a γ = 2.3 dB stability margin

and a tracking specification for ω ≤ 10 rad/s given
by ∣∣∣∣

0.9999
0.26s2 + 1.1s + 1

∣∣∣∣ ≤ |FT | ≤
∣∣∣∣

1.0001
0.4s + 1

∣∣∣∣
where T = L

1+L . In figure 2 it can be seen a
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Fig. 2. Loop L0 and its boundaries.

design of the outer loop coping with the whole
uncertainty, L0, and corresponding boundaries. In
figure 3 P12 has been fixed and a new outer loop,
L′

0, designed. The UHFB reduces its length and,
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Fig. 3. Loop L′
0 and its boundaries.

consequently, ωcu for L′
0 reduces. Since at high

frequency the transfer function from the sensor
noise to the plant input, TN , is given by TNL0

≈
L0
P0

, this ωcu reduction also means a reduction in
the bandwidth of sensor noise amplification, TNL0

vs. TNL′
0
, see figure 4. To get this improvement, an

inner loop, L120 , has to be designed in such a way
the design of L′

0 is still valid even in the presence
of P12 uncertainty. This design is done in terms of
the satisfaction of certain boundaries relating L120

with L′
0 specifications. The addition of such an

inner loop introduces a new noise transfer function
to be considered, TNL120

= L120
1+L120

1
P120 (1+L′

0)
,



transfer function from N12 to the plant input, see
figure 4. P120 and L′

0 are fixed, so TNL120
can be

influenced only by the choice of L120 , the smaller
L120 and its cut-off frequency, the better in terms
of TNL120

noise reduction.

3. NEW APPROACH AND SIMPLIFIED
MODEL

The hardness of the boundaries on L120 to
respect L′

0 specifications depends on how much
uncertainty is covered by L120 and, thus, on
how much L′

0 has been released from. In HW
method, this amount is fixed (cases A and
B). In this section this uncertainty reduction
is parameterized and the dependence of L120

boundaries on it studied by connecting L0 sensor
noise reduction and L120 control effort by means of
template length (τ) reduction. Knowledge of the
optimum 2 L′

0 for a given τ ′ is assumed. A simpli-
fied formulation of the problem is also defined, in
which the UHFB is considered to be rectangular
(the rectangle enveloping the real UHFB) and the
loops are considered to be piecewise linear in the
Nichols chart. In figure 5 optimum outer loops L0

and L′
0 are represented according to this simplified

model. Key frequencies for L0 are denoted as ωi,
i = a, b, ... . Their counterpart in L′

0 are denoted
as ω′

i when they are different. ρ is the gain margin
3 . Define βdB = τdB − τ ′

dB , with β ∈ [0, τdB ]. βdB

parameterizes τ reduction.

This model connects τ with the magnitude of the
optimum loop fitting the specifications, specifically

2 Horowitz optimum definition (Horowitz, 1993) is used:
the optimum loop has minimum high frequency gain and
lyes on the boundaries at every frequency.
3 dB expressed version of a variable is denoted with
subscript dB.
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Fig. 5. Simplified model.

in the critical frequency rank in terms of noise
reduction: in the interval [ωb, ωd],

|L0|dB = −(τdB + ρdB), |L0| = (τρ)−1 (1)

and, for any β,

|L′
0|dB = −(τdB +ρdB −βdB) = |L0|dB +βdB (2)

in a certain interval [ω′
b, ω

′
d] or, in linear terms,

|L′
0| = |L0|β, β ∈ [1, τ ], τ > 1 (3)

L′
0 = L0 (for β = 1) is able to handle the whole

plant uncertainty by itself (with L120 = 0) in such
a way the UHFB is not violated by any point in
L′. But for β > 1, L′

0 needs help from the inner
loop to satisfy

|L′| < ρ−1 (4)

for each frequency. Define λ12 = k12
k120

. From figure
1, |L′| is given by

L′ = G
P

1 + λ12L120

(5)

Considering (5) in the nominal case, G, in terms
of L′

0, can be obtained

G =
L′

0

P0
(1 + L120) (6)

Substituting (6) in (5)

L′ = L′
0

P

P0

1 + L120

1 + λ12L120

(7)

Defining k = k21 +k11k12 and using (7) in (4), the
condition on L120 imposed by the fact β > 1 is
that, for any possible value of kij ,∣∣∣∣L′

0

1 + L120

1 + λ12L120

∣∣∣∣
k

k0
≤ ρ−1 (8)

Note λ12 depends on an uncertain parameter, k12.



In the frequency range of interest, that in which
the outer loop is below the UHFB, the instru-
mental assumption that ∠L120 = 0 will be made.
Due to the typical observed shape of L120 and its
boundaries (see figure 6), and according to the
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Fig. 6. L120 and its boundaries.

authors’ experience, knowing |L120 | at 0◦ phase
gives a very good idea of the boundaries at every
phase, so studying this particular L120 still will
provide good information about demands on L120 .
The boundaries on L120 are tipically:

• Non-existing for ω ∈ [0,≈ ωb] rad/s, ωb ≈ 14
rad/s in the example.

• Single-valued, lower bounds, for ω ∈ [≈ ωb,≈
ωd] rad/s, 50 < ωd < 60 in the example.

• Double-valued for ω ∈ [≈ ωd,∞] rad/s.

In the first frequency range L120 can be arbitrarily
small. In the second frequency range there will be
certain boundaries which obligues L120 to reach
its maximum magnitude, in the example, there
is only one boundary producing this effect, for
ω = 14 rad/s. Arrows have been used to point the
frequencies at which L120 is closer to the boundary
comparing to other frequencies in this range. At
those frequencies the outer loop is closer to the
UHFB, this is the reason why the boundaries for
L120 at these frequencies are more demanding.

Applying (3) and (1) in (8), and using τ = kx

k0
,

kx = k21x
+ k11x

k12x
, it is obtained

β
1 + L120

1 + λ12L120

k

kx
≤ 1 (9)

From (9) it can be computed the maximum
achievable β, βMAX , assuming L120 → ∞ (i.e.,
L120 helps as much as possible L′

0)

β ≤ kx

k
λ12 (10)

Rewriting the right member in (10) in terms of
uncertain parameters and computing its minimum

βMAX =
kx

ka
(11)

where ka = k21x + k11xk12n. This value is deter-
mined by (11) irrespective of the case (A or B).
HW method would use the same value in case A,
but a different one in case B, β = k21n+k11nk12x

k21n+k11nk12n
<

βMAX . As a result:

• in case B, HW method is always conserva-
tive. For instance, for k11x

= 200 (case B),
βMAX ≈ 18.27, whereas using k12F

= k12x

yields β = 9.18.
• in case A, it chooses the biggest possible

uncertainty reduction.

In both cases any different possibility is ig-
nored. In next section the cost of this uncertainty
reduction in terms of L120 control effort is ana-
lyzed, and it is introduced a tool which lets the
control engineer choose a trade-off between both
factors.

4. INNER-OUTER LOOP TRADE-OFF

Minimum L120 needed in order not to violate the
UHFB is deduced from (9)

L120 ≥ β k
kx

− 1

λ12 − β k
kx

(12)

Define
σ =

β − 1
βMAX − 1

(13)

i.e., σ represents linearly, in the rank [0, 1], β evo-
lution in [1, βMAX ]. It represents τ proportional
reduction with respect to the maximum possible
reduction. (12) is rewritten in terms of σ

L120 ≥
σ

(
k
ka

− k
kx

)
+ k

kx
− 1

λ12 − σ
(

k
ka

− k
kx

)
− k

kx

(14)

The right hand member of (14) is maximum for
k = kx, so this condition can be rewritten as

L120 ≥ f(σ) =
σ

(
kx

ka
− 1

)

λ12x
− 1 − σ

(
kx

ka
− 1

) (15)

f(σ) gives the connection between uncertainty
reduction and L120 control effort. In particular, it
defines L120 needed to get maximum τ reduction
(σ = 1)

L120 ≥ f(1) =
kx − ka

kaλ12x
kx

=
k11x − k12n

k21x
(16)

In figure 7 it can be seen an example of f(σ) in
which it is clearly advisable to trade-off using its
information, instead of just getting as much as
possible from L120 .

5. CACSD TOOL

This software is just the first stone in the final
goal of a toolbox for the design of QFT multiloop
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systems. The user introduces a multiloop plant
like the one used in this paper, together with an
outer loop design for β = 1, L0, and another for
β = τ , L∗

0.

In the window in figure 8 the user can design
another loop, L′

0, in two different ways: a) directly
manipulating its poles and zeros (symbols x and
dot, respectively); and b) linearly interpolating
the poles and zeros of L0 and L∗

0 by means of the
slider, where these loops are denoted as L01 and
L02 respectively. The value chosen in the slider is
approximately equivalent to σ as defined in (13).

Every time a L′
0 is chosen, windows corresponding

to figures 9 and 10 are updated. In figure 9 the
three loops are represented in the Nichols chart,
and corresponding UHFB’s are shown. Dots used
for the loops are placed at fixed frequencies, allow-
ing to observe the evolution of cut-off frequency.
Figure 10 is an active version of figure 4, with
wide lines representing L′

0 and TNL′
0
, and thin ones

representing L0, L∗
0 and their associated noises.

Fig. 8. CACSD tool, windows for interactive L′
0

design.
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Another window shows f(σ) curve (see figure 7),
highlighting actual σ and corresponding f(σ), so
that demands on L120 for the selected loop are
also known and, thus, trade-off between L120 and
L′

0 can be interactively chosen.

6. CONCLUSIONS

In this work the NPMM QFT problem has been
revisited. The simplest case has been focused and
a simplified formulation of the problem has been
developed, formulation which allows to mathe-
matically express and analyze the problem, con-
trasting the previous approach. Some of the sim-
plifying assumptions are strongly based on pre-
vious experience of the authors. Specifically, this
formulation has been used to show how a pa-
rameter, previously considered as fixed, can be
used to trade-off between inner and outer loops.
A CACSD tool, which lets the control engineer
interactively choose this trade-off, and observe the
noise reduction achieved, is also presented.



This work aim is to constitute the first step lead-
ing to formalization of NPMM QFT, which pro-
vides a deeper understanding of involved phenom-
ena, having as a final goal the development of a
general theory which covers any system. Research
is being assisted by ad hoc developed CACSD
tools, like (Cervera et al., 2001), which are also
conceived to constitute in the future a multiloop
QFT systems design toolbox.

Throughout this work, minimum phase plants
have been used, following (Horowitz and Wang,
1979a; Horowitz and Wang, 1979b). This noise
reduction scheme could also be used with NMP
plants, in fact can help to get a lower crossover
frequency, as in figure 4. If the inner plant, P12,
is NMP, then there is a limitation in what can
be done by the inner loop, question which has
not been addressed in this work and deserves a
detailed analysis.
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