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1. INTRODUCTION

The LMDS (Local Multipoint Distribution System) is
applied by telecommunication operators for wireless
broad-band data transmission purposes. Such a sys-
tem allows to connect the operator’s network node to
the buildings in which his customers are located,
without necessity to construct an expensive cable
infrastructure. Thus, data are transmitted between
base-stations distributed across the metropolitan area,
and those stations serve regular connections with
subscriber stations located within the effective cover-
age of transceivers belonging to base-stations. Sub-
scriber stations installed on building roofs or facades
then transmit data to subscribers located within the
coverage area through local, e.g. cable, networks.

An essential factor which often decides about eco-
nomic justification of the LMDS system implemen-
tation is to determine base-station locations so that
the highest profit can be achieved, within the avail-
able investment funds. Presently, there is no method-
ology to allow for a general solution of the problem
formulated in that way: in practice, heuristic methods
are applied, largely based on intuition, or other meth-
ods from related fields are adopted; see (Rappaport,
1996; Laibo et al., 2001), also to find rich bibliogra-
phy. The task of LMDS base-station location plan-
ning is not easy due to the requirement to take into

account a number of technical conditions, as well as
economic ones, also in the situation of data uncer-
tainty and non-stationarity.

Basic technical constrains include the coverage ra-
dius of base-station transceivers, as well their maxi-
mal bitrate, i.e. the largest total data quantity which
can be transmitted in a time unit. What is also re-
quired for ensuring data transmission is the line of
sight between the base-station and the subscriber-
station antennas. For that reason, due to complex
land shaping, or such obstacles as tall buildings on
the base-station coverage area, there may exist
shadow areas, on which it is not possible to transmit
between a base-station and the buildings located in
such areas. Thus, there is a limited number of sites
being well visible due to their elevation, which can
be selected as potential locations for base-stations.

In addition to the above-mentioned technical con-
strains, another problem facing planers is estimation
of the future demand. Such estimations are developed
on the basis of imprecise and incomplete data con-
cerning potential service users located on a given
area. Despite such uncertainty, estimations are indis-
pensable to define a spatial distribution of the pre-
dicted demand. This problem gets even more difficult
when planning is long-term, especially with non-
stationarity of data.



Consequently, the planning task requires a choice of
those possible base-station locations which ensure a
maximal profit from services, while the number of
stations is limited by the availabili ty of funds. This
paper will present an algorithm of designing optimal
LMDS base-station locations. The method of statisti-
cal kernel estimators has been applied for the purpose
of describing the spatial distribution of demand for
data transmission services. Due to natural uncertainty
of demand values, also fuzzy logic elements have
been used. In addition, the issue of existence of
shadow areas in the coverage areas of base-stations
and the problem of their limited bitrates have been
taken into account. It is also possible to apply that
method with a several-year planning horizon.

This paper summarizes the material which will be
published in a full version as paper (Kulczycki &
Waglowski, 2004) soon. Complete software applying
the algorithm presented here wil l also be made avail-
able.

2. ESTIMATION OF THE DISTRIBUTION
OF SPATIAL DEMAND:

STATISTICAL KERNEL ESTIMATORS

Let the n-dimensional random variable X, with a dis-
tribution having the density function f, be given. Its

kernel estimator ),0[ :  ˆ ∞→nf
�

 is calculated on the

basis of the m-element simple random sample

mxxx  , ... , , 21 , acquired experimentally from the vari-

able X, and is defined in its basic form by the formula
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where the function ),0[ : ∞→nK � , which is Bore-

lian, radially symmetrical relative to zero, and has a
weak global maximum at this point, fulfilling the

condition ∫ =n xxK� 1d )( , and is called the kernel,

whereas the positive coefficient h is known as the
smoothing parameter. The form of the kernel K and
the value of the smoothing parameter h is selected
most often on the basis of the criterion of the mini-
mum mean square error. It turns out that the form of
the function K has no essential importance from the
statistical point of view, and for that reason, it is pos-
sible when selecting this function to take into account
primarily the properties of the estimator required in
the case of a particular problem. Because of the con-
venience of analytical calculations, the 2-dimensional
Cauchy kernel is applied in this paper:
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In particular tasks, additional procedures are used for
improving the properties of kernel estimators. In the
methodology investigated here, the so-called modifi-
cation of the smoothing parameter is strongly pre-

ferred. For details of the above methodology, see
(Kulczycki, 1998; Silverman, 1986; Wand & Jones,
1994). Exemplary applications of kernel estimators
are presented in papers (Kulczycki, 2000, 2001,
2002a, b).

In the problem investigated here, the kernel estimator
will be used for characterization of the distribution of
spatial demand for data transmission services in the
area under consideration. The variable X is therefore
2-dimensional, i.e. 2=n , while its particular coordi-
nates represent longitude and latitude. The kernel
estimator with the modification of the smoothing
parameter realized by the introduction of the con-
stants 0>is  for mi ,...,2,1= , will be applied after

additional mapping of the coefficient 0>iw  for

mi ,...,2,1=  to every kernel; therefore,
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Finally, having a data base consisting of m potential
locations of subscriber buildings, where each of
them is characterized by its geographical position

T
21 ],[ iii xxx =  and the coefficient iw  representing

potential demand for data transmission services cor-
responding to location ( mi ,...,2,1= ), one can obtain
from formula (3) the kernel estimator describing the
density of distribution of the spatial demand for data
transmission services on the whole area under con-
sideration. This distribution is properly made con-
tinuous owing to the properties of statistical kernel
estimators. Moreover, due to averaging aspects of
such estimators, it is possible to use a simplified data
base, including only the locations of main subscriber
buildings, and taking into account in the corre-
sponding coefficients iw  also smaller objects from

their neighborhood. That action considerably simpli-
fies the most difficult and expensive phase of the
procedure of planning optimal locations of LMDS
base-stations investigated in this paper.

3. BASE-STATION SYSTEM
PERFORMANCE INDEX

In practice, it is not difficult to identify a limited
number of sites for installing base-stations, including
e.g. tall buildings and telecommunication towers.
Having defined in the previous section the function

f̂  which characterizes the spatial distribution of

demand for data transmission services, one can map
for particular locations the values resulting from that
function’s integration, within the coverage areas of
the respective transceivers. In the case of a base-
station system, the integral for the whole area cov-
ered by the ranges of particular transceivers defines
the total demand being also a criterion for the sys-
tem’s quality appraisal.



Let the set of k potential locations of base-stations at

sites T
21 ],[ jjj xxx = , with kj ,...,2,1= , be given.

The following notations are introduced:
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where jC  denotes the j-th circle with the center at

jx  and the positive radius jr  (representing maximal

range of the transceiver mapped to the j-th location),
and },...,2,1{,...,, 21 kjjj n ∈  are different, while

kn ≤≤2 . The total demand characterizing the qual-
ity of the base-station system, is given by the formula
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The text given below presents an algorithm calculat-
ing the values of formulas (4) and (5), which ex-
hausts the procedure allowing to estimate the demand
for data transmission services within the fixed base-
station system, in accordance with formula (6), which
characterizes the system quality.

Due to the selection of a kernel in the form (2), it is
possible to calculate an analytical formula for the
integral from the function of the single kernel iK

with the parameters h, is  and iw , on the circle jC ,

with the radius jr  and the distance ijd  between the

centers of the circle and the kernel (for mi ,...,2,1=
and kj ,...,2,1= ), expressed by
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For the purpose of the problem under consideration,
the above formula may take on the form
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The values calculated on that basis will be subjected
to comparison in the process of search for an optimal
element, while multiplication of the performance
index by a positive constant does not affect results
obtained in such a problem.

Next, the analytical calculation of the integral value,
in the case of intersectioning of any number of cir-

cles, is practically unexecutable. A practical ap-
proximate procedure will therefore be investigated
below. First, the case of the kernel iK  and two cir-

cles 
1jC  and 

2jC  will be considered. Owing to a

possibili ty of renumbering, it can be assumed, with-
out reducing generali ty, that 

21 jj rr ≤ . Let 
21, jjD

denote the distance between the centers of the circles.
One of the following relationships may occur:
(A)

2121, jjjj rrD +≥ , implying disjunction of the

circles or edge contact; then, 0
21,

=jjE ;

(B)
2221, jjjj rrD −≥ , which means that the smaller

circle is their intersection; then, 
221, jjj EE = ,

which value may be calculated from formula (8);
(C) neither of the pervious cases occurs; the circle

intersection has the shape of a lens; the method
of calculating the approximate value of 

21, jjE  is

given below.
This method consists in replacing the lens with a cir-
cle, for which formula (8) can be applied. By guar-
anteeing equal fields of the circle and the lens and
with proper location of the circle’s center, the differ-
ence between the values of function (3) on the areas
of the lens and of the circle is not large, while the
error of integration (having the averaging nature) on
them is fairly insignificant. It is worth noticing that
the largest values of the error occur when the lens is
considerably flattened, or when its field, together
with the value 

21, jjE , is relatively small .

Let 
21,

ˆ
jjD  mean the distance between the points of

intersection of the circles 
1j

C  and 
2j

C ; according to

the assumptions of case (C): 0ˆ
21, >jjD . The calcu-

lation of the value 
21,

ˆ
jjD  is not difficult based on

non-complex procedures of analytical geometry. The
field of the lens 

21, jjL  in defined, in the case of a flat

lens, i.e. when 2
,

2
2112 jjjj Drr +≥ , by formula
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however, in the case of a convex lens, i.e. when
2

,
2

2112 jjjj Drr +< , by formula
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Upon calculation of the lens field 
21, jjL  from for-

mulas (9) or (10), one can easily calculate the radius
of the substitute circle 

21, jjr :
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Its center is defined as follows. The straight line
crossing the centers of the circles 

1jC  and 
2jC  is

also crossing each of them at two different points,
one on each lens edge. Let the center between those
points be the center of the substitute circle. Calcula-
tion of its coordinates is not diff icult using the ana-
lytical geometry methods. Once the center and the
radius of the substitute circle are known, it is possible
to calculate the value of 

21, jjE  based on formula (8).

The above procedure may be easily generalized in the
recurrent manner in the cases of intersection of any
number of circles. Upon circle ordering in accor-
dance with the increasing radius size, it is necessary
to calculate the substitute circle parameters for the
lens obtained from the first pair, followed by subse-
quent iterations for the substitute circle and subse-
quently considered ones, repeating such iterations
until the list of circles is exhausted. The result is a
substitute circle for the area being intersection part of
all the circles under consideration. It is possible to
apply formula (8) to the resulting circle.

The above completes a basic calculation algorithm
necessary to apply formula (6), allowing to charac-
terize the quali ty of the given base-station system.
This algorithm can be easy modified to take into ac-
count shadow areas and limited bitrates of base-
stations.

Thus, as it was mentioned in the introduction, within
the area theoretically covered by transceivers occurs
the shadow area in which transmission is impossible
due to uneven land or obstacles, e.g. tall buildings. In
practice, shadow area are often approxi-mated by
simple geometric figures, while those figures are
treated as circles, or, generally, circle unions. With
this assumption, the algorithm developed above al-
lows for easy calculation of the integral from the
density function of the spatial distribution of the de-
mand for data transmission services on shadow areas,
in analogy to formula (6), followed by subtraction of
that value from the index calculated previously.

The performance index of the particular base-station
system, defined formula (6), represents the capabili ty
of meeting the total demand for teletransmission
services provided within the system’s transceiver
coverage. However, on especially attractive city ar-
eas, the coverage demand may not be met due to
limited transceiver bitrates. In the following, the pro-
cedure allowing to account for limited bitrates of
particular base-stations will be presented.

Let 0>jb  with *,...,2,1 kj = , mean maximal bi-

trates of particular transceivers belonging to a sub-

system of *k  base-stations with connected coverage
area. The set, being the union of the areas within the
base-stations’ coverage, is divided by the circles con-
stituting coverage edges of particular transceivers
into a number of subsets with nonempty interior (the

maximal possible number is 12
*

−k ). Those sets,
denoted further as iZ , will be numbered with the

index Ii ,...,2,1= . Using the algorithm presented
previously, the approximate value of the integral

∫
iZ

xxf d)(ˆ , for each Ii ,...,2,1= , can be calculated.

Let now the matrix A with dimension Ik ×*  and
nonnegative elements, be given. Particular rows of
the matrix are connected with subsequent base-
stations of the system under consideration, while
columns are connected with particular subsets iZ . If

the i-th subset is outside of the range of the j-th sta-
tion, one should assume that 0, =ija . The following

performance index will be considered, and the deci-
sion variables will be all the elements of the matrix A
whose value was not assumed above as zero (the re-

spective set will be denoted below as }{ *
,ija ):

                         
}{ *

,

max
ija

∑
=
=

Ii
kj

ija

,...,2,1 
,...,2,1

,
*

  , (12)

with the boundaries

   0, ≥ija    for  *,...,2,1 kj =   and  Ii ,...,2,1= (13)
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That is a typical li near optimization task. By arrang-

ing the elements of the set }{ *
,ija  in a vector, it may

be transformed to a canonical form and solved by the
generally available simplex method. Each of the ele-
ments ija , , obtained in accordance with the above

procedure, indicates which portion of the demand
from the area iZ  should be served by the station j in

order to meet the largest possible demand for tele-
communication services for the given base-station
system, taking into account limited bitrates of the
respective transceivers.

4. SELECTION OF THE OPTIMAL
BASE-STATION SYSTEM

Once the base-station system performance index has
been worked out in accordance with previous section,



one may start resolving the basic task of the present
paper, i.e. the selection of the optimal base-station
system. For that purpose, the methods origin from
operational research will be applied.

The utilization of radio frequencies made available to
the telecommunication operator requires application
of devices, with essentially different functional pa-
rameters. In the model presented here, a possibility of
selection, in each potential location, of one possible
version of transceivers, from among p options, while

�∈p , is assumed. Particular versions are repre-

sented with the following positive parameters: ir  – a

coverage radius, ib  – a maximal bitrate, and ic  – the

cost of equipment and its installation, where
pi ,...,2,1= . The case when no equipment is installed

at a location is reflected by 0=i  and 00 =c .

Let the k-dimensional decision vector

                          T
21 ],...,,[ kggg (16)

be given. Particular coordinates represent potential
base-station locations, and assume the values

},...,1,0{ pg j ∈  for kj ,...,2,1= . To be more precise:

if the j-th coordinate is 0, i.e. 0=jg , it means that

the transceiver installation at the j-th location is not
planed; however, if that coordinate takes on the value
i from the range 1,2,...,p, it means that the i-th ver-
sion of such devices is installed at the j-th location.
The optimization task consists here in searching for
the maximum of the expression

             )],...,,([max T
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with the boundary
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where the positive number C
~

 means the maximal

amount of available funds, and )],...,,([ T
21 kgggE

denotes the value of function (6) for a system of
transceivers distributed in accordance with the value

of the decision vector T
21 ],...,,[ kggg .

Let the k-level decision tree be given: particular
levels represent subsequent potential base-station
locations. Decision tree nodes are assigned subse-
quently one of possible values },...,1,0{ pg j ∈  for

kj ,...,2,1= ; if the j-th level is assigned the value

jg , the node represents the case in which the jg -th

version of a transceiver is installed at the j-th loca-
tion. That also implies assigning to that node the cost

jgc  of a given version of a transceiver, which is

necessary to verify boundary (18). The solution of
the problem under consideration consists in the

determination of a path from the first level node to
the k-th level node, described by the vector

T
21 ],...,,[ kggg , for which the function E reaches

the maximum, and boundary (18) is fulfill ed. To
solve so formulated a task, a classical method of di-
vision and boundaries has been applied.

An important element affecting the rate of calculation
is effective “closing” those nodes from which a
better path then previously found cannot be gener-
ated. Let the numbering of particular transceiver ver-
sions be such that pccc ≤≤≤ ...10 , while the num-

bering of tree levels such that ≥∫ ),( max1

d)(ˆ
rxC

xxf
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),(),( maxmax2

d)(ˆ...  d)(ˆ
rxCrxC k

xxfxxf , i.e. ac-

cording to the demand level met by a given location,
for the transceiver version with the largest range

maxr . If the node under consideration is located in

layer }1,...,2,1{ −∈ kj , it will not be difficult to cal-

culate the number 
�∈J  stating how many cheapest

transceivers may be installed within available funds:
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where int(a) denotes the integer part of the number
�∈a . Let a fragment of the path above level j de-

scribe the partial decision vector T
21 ],...,,[ jggg . If

the value E, characterizing according to formula (6)
the base-station quali ty for the decision vector

        T

factors  

21 ]0,...,0,,...,,,...,,[
maxmax �� ��� ��

J

rrj ggggg   , (19)

where 
maxrg  representing the version of transceivers

with the largest coverage, is smaller then or equal to
the maximum of previously calculated value E, then
such a node should be closed because decision vec-

tors of the form of T
21 ]any  ,,...,,[ jggg  may not

produce a better path then the one found.

5. LONG-TERM PLANNING HORIZON

The task previously considered was stationary in na-
ture. However, one can expect increased transmission
to current customers and inclusion of new customers
with time. Also, a gradual increase of funds can be
expected owing to current income and growing op-
erator’s creditworthiness. In addition, the parameters
of transceivers are also changed. After signing new
agreements and expanding urban infrastructure, new
base-station locations will become available. The
methodology presented in this paper allows to ac-
counting easily for the time factor and, in particular,



all the above-mentioned task aspects.

If the project is considered within }1,0{\
�∈T  time

sections (in practice such periods most often refer to
particular years, with 2=T  or 3=T ), decision
vector (15) should be generalized to

,,..., ,   ,,..., ,[ 2,2,22,11,1,21,1 11 ====== tktttktt gggggg

           T
,,2,1 ],..., ,   ,   ...

1 TtkTtTt ggg === (21)

and boundary (18) assumes a form of T independent
conditions
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where the parameter Tt ,...,2,1=  characterizes par-
ticular time sections, and all the quantities using in
optimization task are correspondingly indexed by t,
characterizing conditions possibly different for par-
ticular time sections.

6. FUZZY NATURE OF DEMAND

The coefficients iw  for mi ,...,2,1=  introduced in

formula (3) represent the demand for teletransmission
services assigned to particular subscriber-station lo-
cations. Their value is estimated in practice by an
expert opinion expressed verbally, often based on
intuitional premises. Consequently, the description of
the predicted demand for teletransmission services by
a subscriber station will require fuzzy logic elements.
What should also be taken into account is a specific
nature of the task under consideration: a lot of fuzzy
numbers (equal to the number of subscriber stations
m) necessary to identify and to use in subsequent
analysis. In that situation, especially suitable are the
fuzzy numbers of the type L-R (Kacprzyk, 1986).

Thus, for each of m locations of subscriber buildings,
the coefficient iw  representing a potential demand

for data teletransmission services, introduced in for-
mula (3), can be generalized to the three-parameter
fuzzy number L-R suitable for identification and cal-
culations ) , ,( iiii w βα=

�
, where 0≥α− iiw  for

every mi ,...,2,1= . In a special case, )0 ,0 ,( ii w=
�

may represent the real (nonfuzzy) number iw . In this

situation, the performance index of the base-station
system under consideration (6) has a form of linear
combination of three-parameter fuzzy numbers i 

�
,

and, therefore, it also becomes a three-parameter
fuzzy number  � . To allow for comparison of quali-
ties of particular base-station systems, the methodol-
ogy of preference theory (Fodor & Roubens, 1994)
will be applied. The preference function P of the
fuzzy number  � , with the bounded support of the
membership function, will be adopted in the form
resulting from the decision-making practice
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�
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∫

∫
  ,
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where ]1,0[∈δ , �	  means the membership function

of the fuzzy number 
 , while �� supp  denotes its

support. The value of the membership function is
therefore a linear combination with weights δ  and

δ−1  of the average value of the fuzzy number and
the minimum value of its support. The average num-
ber corresponds to the Bayes decision rule and ex-
presses a “realistic” operation, while the minimum
value of the membership function support results
from the minimax rule and represents the
“pessimistic” point of view. The parameter δ  deter-
mines therefore the company’s strategy in the range
from realistic one (assuming average of the predicted
demand) for 1=δ , to pessimistic one (assuming the
lowest level of the predicted demand) for 0=δ .
When clear preferences are missing, the value

5,0=δ  can be proposed.
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