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Abstract 
A dynamic model developed in the HYSYS process simulator was validated using 

experimental data obtained from a pilot scale cyclohexane / n-heptane distillation. The 
resulting model was linked to the pilot unit’s DeltaV (Emerson Process Management) process 
control software. This link allowed non-measured parameter estimation to occur in parallel with 
the operation and control of the pilot plant column. To enhance the model’s accuracy, a novel 
model reconciliation methodology was implemented using output from the controller interface. 
A virtual sensor was also developed which predicted product compositions based on 
measured column parameters. Linear and non-linear multivariable control strategies were 
implemented and tested. 
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Introduction 

Distillation is the most common separation technique employed in industry and one of 
the most energy consuming. Improving the process efficiency is an on-going goal of the 
chemical industries.  This paper presents simulation development and experimentation results 
for the binary distillation of cyclohexane / n-heptane in a column at the Separation Research 
Program at the University of Texas. A dynamic model of the process was developed using 
HYSYS (Aspentech) and validated with experimental data. The model was connected to the 
process online and used to estimate parameters where process data was not available. The 
process was controlled using DeltaV from Emerson Process Management.  

Pilot Plant Description 



 

 

Figure 1. Process configuration 

The process configuration and equipment description are presented in Figure 1 and 
Table 1 respectively. The fully instrumented process was operated continuously while  distillate 
and bottom products were recycled back to the feed tank  increasing the time to steady state 
and adding difficulty to the modeling effort.  

Table 1. Equipment Description 

Diameter Total 
Height 

Packing 
Height Packing Type Column 

Characteristics 
6 in 34 ft 30 ft Nutter Rings (Metal, 

random) No. 0.7 
 

 Volume 
Feed Tank 50.72 ft3 

Accumulator 1.05 ft3 
Reboiler (Design 

maximum) 
130 KBTU/HR 

 
Process Simulation 

Steady state and dynamic state models for binary distillation were developed using 
Aspen Plus and HYSYS from Aspentech. To adequately predict the process dynamics in the 
HYSYS model, the column template  was represented by components shown in Figure 2. 
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Figure 2. Block diagram of Column Internals and Bottom Configuration.  

 
All the control loops where implemented with PID controllers. Initially, for the simulation 

in HYSYS , composition control was not implemented. An initial simulation was conducted to 
determine the most responsive column temperatures that could be employed in the model 
predictive composition control in DeltaV. 
 

Twenty four equilibrium stages (condenser and reboiler not included) were used in the 
column dynamic simulation. Using the physical location of the  temperature measurements, it 
was determined that these measurements corresponded to stages 6, 8, 9, 11, 13, 15, 16, 21 
and 22. Based on the simulation, temperatures from stages 9 and 16 were selected for control. 
 
Experimental Results 
Steady State Data  

Table 2 presents a comparison between the simulated data from the steady state model 
developed in Aspen Plus and the experimental results. 
 



 

Table 2. Steady State Data 
Process Variable Experimental Data Simulated Data 

Reboiler Duty 59,359.0 BTU/hr 28,124.4 BTU/hr 
Column Pressure Drop 7.99 psig 8.3 psig 
Overhead Pressure 2.406 inH20 0 inH20 
Feed Flow Rate 90.11 PPH 90.11 PPH 
Bottoms Flow Rate 45.47 PPH 48.05 PPH 
Distillate Flow Rate 45.55 PPH 42.06 PPH 
Reflux Flow Rate 94.1PPH 94.1PPH 
Feed Temperature 203.71 F 221.75 F 
Reflux Temperature 54.8 F 60 F 
Distillate Composition C6  0.86 0.8649 
Distillate Composition C7  0.14 0.1351 
Bottom Composition C6 0.105 0.1055 
Bottom Composition C7 0.895 0.8945 
Feed Composition C6 0.46 0.46 
Feed Composition C7 0.54 0.54 

 
The steady state simulation was configured to match the compositions of feed, distillate 

and bottoms streams. The results were very close to the experimental data, it is estimated that 
there are heat losses of 31,234.6 BTU/hr  (53 percent of the reboiler input).   

 
Dynamic State Data 

HYSYS was selected for the simulation because it allows dynamic simulation and has a 
DCS interface with the DeltaV control system. This facilitates linking the model to the process. 
HYSYS has an object-oriented design with event-driven graphical operating environment. 
Although it is a simulation package with pre-built operation units, it allows the user to 
customize the modules or add supplement code by interfacing it with visual basic.   

Based on the simulation results, experiments were performed in the real plant. The data 
collected during the experiments were used to improve and validate the model. The model and 
controller configuration is described by Figure 3. 



 

 
Figure 3. Model and data acquisition configuration. 

The range of operating conditions was determined by the equipment limitations and 
combined with simulation to identify the ranges in the manipulate variables. A summary of the 
variable operating ranges is presented on Table 3. 

Table 3. Operating Conditions. 

Feed 
Flow 
Rate 
(lb/hr) 

Feed 
Temperature 

(F) 

Steam 
Flow 
Rate 

(lb/hr) 

Steam 
Temperature 

(F) 

Steam 
Pressure 

(psia) 

Reflux 
Flow 
Rate 

(lb/hr) 

Reflux 
Temperature 

(F) 

Column 
Level 

(in) 

Accumulator 
Level 

(in) 

90-
105 

200-210 65-80 340-343 124-127 90-
115 

52-63 9-14 8-12 

 
Control configuration 

The operating objectives for the binary distillation experiment were to hold constant the 
level in the accumulator and bottom of the column constant and to maintain the pressure of the 
column while producing distillate and bottom products at the desired concentrations. The 
pairing of manipulate variables with controlled variables is described in Table 4. 



 

Table 4. Pairing of Manipulate Variables with Controlled Variables. 

Manipulated Variables Controlled Variables Control Strategy 

 Feed flow valve 
position 

Feed Flow PID 

Steam flow valve 
position Feed Temperature PID 

Nitrogen flow valve 
position Pressure PID 

Distillate Flow Accumulator Level PID  - Cascade 

Bottom Flow Bottom Level PID – Cascade 

Reflux Flow Multivariable 
control 

Steam Flow 

Temperatures at top and 
bottom of the column Multivariable 

control 

 
The process control configuration included separate PID loops for column pressure, 

feed temperature and steam, reflux, distillate, bottoms and feed flow rates. Column and 
accumulator hold-ups were configured with master PID loops whose manipulate variables 
were bottom and distillate flow rate respectively.  The two point composition control was 
perform indirectly with model predictive control, reflux and steam flow rate were manipulated to 
control the temperatures at the top and bottom of the column. Since pressure was held 
constant, temperature could be used to control composition.    

 
Multivariable Control 

Multivariable control was implemented by the configuration of a model predictive control 
strategy, where, as stated in Table 5, the manipulated variables were reflux and steam flow 
rate and the control variables were the temperatures from stages 9 (top of the column)  and 16 
(bottom of the column). The controller configuration included one measured disturbance, one 
constrained variable, and one optimized variable. The control strategy is illustrated in Figure 4. 

 



 

 
Figure 4. Model Predictive Control Configuration 

 
Model Reconciliation 

To reconciliate the model with the real data, efficiencies from the column model were 
modified to match readings from the process column temperatures with the temperature 
readings from the model. Since there were only nine column temperature measurements, the 
column efficiencies from the stages without process measurement were modified at the same 
time as the closest stage with measurement. The configuration is illustrated in Figure 5. 
 

 
Figure 5. Stage efficiency manipulation for model reconciliation. 

 
The model efficiencies were modified by a model predictive control whose control 

variables where the model temperatures from stages 6, 8, 9, 11, 13, 15, 16, 21, and 22. The 
controller set points were given by the readings collected from the process temperatures. 

 
Initially the approach to equilibrium of each stage was assumed to be the same, and 

this parameter was adjusted to match the real process data. At the start this was done 
manually and then a parameter estimator was used to modify the efficiencies online using 



 

feedback from the process. The stage efficiency used in HYSYS is a modified Murphree stage 
efficiency [1]. It is described by Equation 1. 
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     ( 1) 

 
Where: 
 
E = efficiency 
Vn = total vapor molar flow leaving stage n  
yn = vapor mole fraction on tray n 
xn = liquid mole fraction on tray n 
n = tray number (measured top down) 
 
 If the vapor flow is constant (i.e. Vn = Vn+1; Constant molar overflow), then Equation 
1 reduces to the standard Murphree stage efficiency. 
 

 
Figures 6 to 9 compare the model predictions and the process data over an operating 

region for a step test in the reflux flow rate  from 90 to 150 lb/h.  The r-squared fit is used as a 
measure of agreement between the model and the real data.   
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Figure 6. Simulated and actual temperature profiles for stages 6 and 8 during a positive step 

change in the manipulated variable rate (reflux flow 90 lb/hr -115 lb /hr). 
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Figure 7. Simulated and actual temperature profiles for stages 9 and 11 during a positive step 

change in the reflux manipulated variable rate (reflux flow 90 lb/hr -115 lb/hr). 
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Figure 8. Simulated and actual temperature profiles for stages 13, 15 and 16 during a positive 

step change in the manipulated variable rate (reflux flow 90 lb/hr -115 lb/hr). 
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Figure 9. Simulated and actual temperature profiles for stages 21 and 22 during a positive step 

change in the manipulated variable rate (reflux flow 90 lb/hr -115 lb/hr). 

 
After the model was reconciled in the operating region, experimental and simulated data 

were used to identify a first order model plus dead time model relating reflux flow rate and 
temperatures from stages 9 and 16. These models were used by the model predictive 
controllers to control composition in the model and process. The results are summarized in 
Table 5. 

 



 

Table 5. FOPDT models for simulated and real data. Manipulated variable: Reflux flow rate. 

 
 Reflux Flow Rate Negative Step Change 
 Stage 9 Stage 16 
 Simulation Pilot Plant Simulation Pilot Plant 
Process Gain -0.4294 -1.94 -0.421 -1.6 
Overall Time Constant 0.2337 6.48 0.1 5.33 
Dead Time 0.1347 7.69 1 2.87 
Sum of Squared Error (SSE) 0.4474 35.17 8.74 20.4 
Goodness of Fit (R2) 0.9983 0.9915 0.9651 0.9931 
 Reflux Flow Rate Positive Step Change 
 Stage 9 Stage 16 
 Simulation Pilot Plant Simulation Pilot Plant 
Process Gain -0.5861 -0.6881 -0.3544 -0.6489 
Overall Time Constant 1 7.49 1.5 8.86 
Dead Time 0.9505 1.55 0.4685 4.55 
Sum of Squared Error (SSE) 10.24 887.35 3.82 150.17 
Goodness of Fit (R2) 0.9983 0.8784 0.9982 0.9651 

 
The analysis indicated close agreement in the model gains and limited agreement in the 

time constants and delays. This effect is due to the fact that the model does not account for all 
the process characteristics as pipe lengths, valve stiction, etc. The overall model agreement 
was very satisfactory. The highest disagreement found during a change in the reflux flow rate 
was indicated by stage 21, were the feed temperature disturbance had more influence. With 
the model reconciliation configuration, the model fit was improved to an r-squared fit of 0.84 –
manual mode. Figure 10 illustrates the stage temperature response with the feed temperature 
influence.  
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Figure 10. Simulated and actual temperature profile for stage 21 and feed during a positive 

step change in the reflux flow rate (90 lb/hr -115 lb/hr). 

  
As can be seen in Figure 10, the model response does not reflect all the feed 

temperature disturbances introduced to the process. The process feed temperature control is 
writing the set point to the model feed temperature control which holds the temperature at a 
constant value since the model does not account for the ambient and steam flow variations. 
Instead of complicating the model to account for every disturbance in the process, temperature 
from stage 16 was selected for control and temperatures from stages 21 and 22 were left as 
indication and not considered in the control strategy.    

 
Offline, the model predictive control used in the model was modified to use the same 

FOPDT used by the model predictive control used in the process. Online, the model predictive 
control in the model was overriden and the set point of the manipulated variables set up by the 
process controllers directly. The same analysis was repeated for the other manipulated 
variable, reboiler duty. The summary of the FOPDT models is given in Table 6. 
 



 

Table 6. FOPDT models for simulated and real data. Manipulated variable: Reboiler Duty. 
Controlled Variable: Stage Temperature. 

 Reboiler Duty Negative Step Change 
 Temperature Stage 9 Temperature Stage 16 
 Simulation Pilot Plant Simulation Pilot Plant 
Process Gain 0.062 0.4925 0.0357 0.175 
Overall Time Constant 0.1146 10.88 0.1 0.6143 
Dead Time 0.113 1 0.9991 1.66 
Sum of Squared Error (SSE) 0.0191 22.5 0.0794 11.23 
Goodness of Fit (R2) 0.9925 0.9448 0.9037 0.8845 
 Reboiler Duty Positive Step Change 
 Temperature Stage 9 Temperature Stage 16 
 Simulation Pilot Plant Simulation Pilot Plant 
Process Gain 0.0621 1.25 0.0356 1.01 
Overall Time Constant 0.75 5.23 0.1 3.93 
Dead Time 0 4.91 0.651 0.5401 
Sum of Squared Error (SSE) 0.0342 181.06 0.0336 89.78 
Goodness of Fit (R2) 0.9969 0.9781 0.9911 0.9811 

 
The results from the FOPDT models indicated that the model performed very well to 

changes in the reflux flow rate but still needed improvement to responses to duty changes.  

Development of a Composition Estimator 
The pilot plant does not have online composition measurement, for this reason it was 

necessary to develop an online composition estimator for distillate and bottom products. 
Additionally, the plant is configured to recycle the products back to the feed tank constantly 
changing the feed composition. For this reason, a feed composition estimator was also 
needed.  

 
Three complete runs of 36 hours were performed to collect the data to develop the 

composition estimators. During the first two runs data was collected to develop the models, 
and once the models were developed a third run was performed to validate them. The 
compositions used to train the feed composition predicting module were from the actual 
samples collected during the experiments. Two validations of the feed module were performed. 
One used as input the prediction from the distillate and bottom composition estimators. To 
eliminate additional error the other used the measured distillate and bottom compositions. The 
bottom and feed modules had very good performance which was verified by comparing the 
prediction with actual data. Since the variations were higher in the distillate composition, the 
distillate module displayed lower agreement between the prediction and the real data. This 
experience pointed out the relation between the number of data points used to train the neural 
net and the output range of variation.   

 
Conclusions 

In this work, a virtual sensor to measure composition, an online model reconciliation 
technique, and a multivariable control strategy were tested experimentally using a cyclohexane 



 

/ normal-heptane binary distillation system. A neural net was used for the virtual sensor and 
increasing the range of variation in the measured variable introduced error to the prediction. 
The proposed model reconciliation approach displayed good results in the multivariable 
nonlinear system. In future work disturbances could be added to the model to improve its 
performance.  
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