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Abstract — This paper presents a decomposition approach for a quite general class of mixed-
integer dynamic optimization problems that is capable of guaranteeing the global solution despite
the nonconvexities inherent to the dynamic optimization subproblems. A case study is presented
in connection to the optimal design and operation of a batch process consisting of a series reaction
followed by a separation with no intermediate storage. The developed algorithms demonstrate
efficiency and applicability in solving this problem.
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1 Introduction

Recent advances in process synthesis, design, operations and control have created an increasing
demand for efficient numerical algorithms capable of optimizing a dynamic system coupled with
discrete decisions; these problems are termed Mixed-Integer Dynamic Optimization (MIDO). Areas
of application for MIDO include batch process synthesis and development, design of batch distilla-
tion columns, solvent design in batch processes, simultaneous design and control, and optimization
of hybrid discrete/continuous systems.

In contrast to dynamic optimization problems, for which direct solution methods (including
global dynamic optimization methods) are capable of solving a broad class of problems, only limited
progress has been made in addressing MIDO problems. In particular, no general procedure has yet
been proposed that guarantees convergence to the global solution of MIDO problems.

In this contribution, building upon recent developments in both deterministic global opti-
mization for Mixed-Integer NonLinear Programs (MINLPs) and relaxation techniques for optimiza-
tion problems with ODEs embedded, we develop a decomposition approach for a quite general class
of MIDO problems that is capable of guaranteeing the global solution despite the nonconvexities in-
herent to the dynamic optimization subproblems, while still potentially avoiding total enumeration
of the discrete alternatives.

2 Theoretical Background

Let P =
[

pL,pU
]

⊂ R
np, Y = {0, 1}ny and X ⊆ R

nx be such that x (p,y, t) ∈ X, ∀ (p,y, t) ∈
P ×Y × [t0, tf ]. We consider the class of MIDO problems that conform to the following formulation:

min
p,y

J = φ0 (x (p,y, tf) ,p,y) +

∫ tf

t0

ψ0 (x (p,y, t) ,p,y, t) dt

s.t. 0 ≥ φk (x (p,y, tf) ,p,y) +

∫ tf

t0

ψk (x (p,y, t) ,p,y, t) dt , k = 1, . . . , nc

ẋ (p,y, t) = f (x (p,y, t) ,p,y, t) , ∀t ∈ [t0, tf ]
x (p,y, t0) = h (p,y)

p ∈ P

y ∈ Y

(P)

where p denotes the continuous time-invariant parameters; y is a special set of time invariant
parameters that can only take 0− 1 values; t0 and tf denote the initial and final time, respectively;
x are the continuous variables describing the state of the process. Also note that in this formulation,
φk and ψk, k = 0, . . . , nc are potentially nonconvex mappings.

The methodology adopted to solve MIDO problems as specified in (P) to guaranteed global
optimality consists of extending the outer approximation algorithms originally developed by Kesavan
and co-workers [1, 2] for nonconvex MINLPs. Two distinct algorithms are considered. On finite
termination, the first algorithm guarantees finding the global solution of (P) within finite tolerance,
while the second algorithm finds rigorous bounds bracketing the global solution of (P) (and a
potentially suboptimal solution). The advantage of the second algorithm is a substantial reduction



in computational expense as will be illustrated by the case study. These algorithms are both based
on construction of the following subproblems:

• Primal problem: a nonconvex dynamic optimization problem obtained by fixing the binary
variables y in (P), any feasible solution of which yields a rigorous upper bound to the solution
of MIDO problem (P),

• Lower Bounding Convex MIDO problem: a convex MIDO problem, the solution of
which yields a valid lower bound to the global solution of problem (P),

• Relaxed Master problem: a MILP, the solution of which represents a valid lower bound
on that subset of Y not yet explored by the algorithm,

• Primal Bounding problem: a convex dynamic optimization problem, the solution of which
provides a valid and tighter lower bound to the Primal problem for each fixed binary realization
y than that provided by the Relaxed Master problem that generates y.

A prerequisite for constructing any of these subproblems, excluding the Primal problem, is
a convexity theory for dynamic optimization and the ability to build valid convex relaxations for
the functions in Problem (P). Here, valid convex relaxations for the nonconvex functions with state
variable participating are constructed by applying the convexity theory and relaxation techniques
developed in [3, 4] according to the following three-step procedure:

1. Compute time varying enclosures for the solution of the embedded dynamic system by apply-
ing any suitable state bounding technique.

2. Construct convex underestimators and concave overestimators for the solution of the embed-
ded differential system.

3. Derive convex underestimators for the terms with state variables participating, e.g., by apply-
ing McCormick’s technique for relaxing factorable functions [5]. Concerning integral terms,
valid convex/concave relaxations are derived by exploiting the monotonicity of the Lebesgue
integral as demonstrated in [6].

A thorough description of the different subproblems, as well as a complete statement of the
Algorithms, are presented in [7].

3 Case Study

The application of the MIDO algorithms is demonstrated with an example based on the batch
process shown in Fig. 1. It consists of a series reaction (A → B → C) followed by separation with
no intermediate storage (NIS). The objective is to select the optimal process design and operation
that minimizes the overall manufacturing cost subject to a fixed production amount of B in given
time. The interested reader is referred to [7] for a complete statement of the problem objective and
constraints. The model equations are derived by assuming that the process operates at a cyclic
steady state. The concentration profiles of the reactant A and products B, C are governed by a



set of ODEs, assuming first-order kinetics, whereas a perfect split of components is assumed for the
batch distillation. The inventory of equipment, their rental cost and their characteristics, as well as
the physical properties of the pure components A, B and C, are the same as those specified in [8].
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Figure 1: Task network of a 2-stage batch process.

The resulting problem is a nonconvex MIDO problem that contains 1 control variable (reac-
tor temperature), 4 design parameters (length of the manufacturing campaign, batch reactor cycle
time, batch distillation cycle time, and reactor volume), 39 binary variables (equipment selection),
and 1 integer variable (total number of batches). By accounting for the existing SOS1 sets of binary
variables, the total number of discrete alternatives in this problem is 8,316.

Table 1: Results for the case study problem.

Heuristics Iterations CPU time (sec)
primal primal bounding relaxed master overall

MIDO algorithm 1:

without domain reduction 1,305/1,266 53,631 272 1,584 55,656
with domain reduction 1,082/1,062 50,416 235 703 51,465
with domain reduction &
screening model cuts

512/482 12,243 303 420 13,020

MIDO algorithm 2:

without domain reduction 1,305/1,266 334 269 1,587 2,357
with domain reduction 1,082/1,062 371 234 703 1,417
with domain reduction &
screening model cuts

512/482 66 298 421 839

The computational times for solving this problem are reported in Table 1. The application
of Algorithm 1 provides the global solution to the problem in about 14.3 hours and 15.5 hours
depending on whether or not domain reduction is applied; in both cases, total enumeration of the
process structure alternatives is avoided as only 1,082 binary realizations out of 8,316 were visited
in the former case, and 1,305 in the latter. As expected, the major computational expense derives
from the solution of Primal problems to ε-optimality.

Roughly, the more promising binary realizations are visited early by the outer approxima-
tion algorithm, and the upper bound rapidly reaches the global minimum of the problem (found



after about 200 iterations); this can be seen from Fig. 2 (left plot), which depicts the solutions of the
Primal and Relaxed Master problems versus the iteration count. By using the current upper bound
as an incumbent in the branch-and-bound procedure, the computational expense for subsequent
Primal problems is then progressively reduced as it becomes faster to detect whether a given binary
realization will yield a worse upper bound or is infeasible. These considerations are illustrated on
the right plot in Fig. 2, which depicts the computational expense versus the iteration count.
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Figure 2: Case study problem — left plot: MIDO iterations; right plot: CPU time (with domain
reduction).

The application of Algorithm 2 was also considered to solve this problem. It is worth
noting that this simplified algorithm finds the global solution despite the fact that no theoretical
guarantee can be given. In addition, the CPU time required to solve the problem is dramatically
reduced, for Algorithm 2 terminates in approximately 40 minutes and 24 minutes without and with
the application of domain reduction techniques, respectively.

In order to enhance the convergence of the algorithms, a link has been established with the
screening model approach developed in [9]. More specifically, valid cuts derived from the screening
model are added to the Lower Bounding Convex MIDO problem to tighten the relaxations. The
results obtained are also reported in Table 1 for Algorithms 1 and 2. One sees that the addition
of screening model cuts significantly reduces the overall number of iterations, and correlatively the
overall CPU time, for the use tighter relaxations allows the algorithms to exclude a larger number
of binary realizations. These results therefore demonstrate that large benefits can be realized by
considering screening models for batch process development purposes.

4 Conclusion

In this paper, we presented an algorithm for solving MIDO problems to guaranteed global optimality
that potentially avoids total enumeration of the discrete alternatives. The algorithm implements an
outer-approximation method for nonconvex MIPs in combination with a relaxation technique for
constructing convex underestimators of functions with state variables participating. Two variants
of the algorithm were considered.



A case study was presented in connection to batch process development. The process con-
sidered consists of a series reaction followed by a separation with no intermediate storage. The
objective is to select the optimal process design and operation that minimizes the overall manu-
facturing cost subject to either a fixed production rate constraint or a fixed amount of product
in given time. The developed algorithms demonstrate efficiency and applicability in solving either
problem. Several heuristics, such as bounds tightening techniques, were considered to enhance the
convergence of the algorithms. A link was also established with the screening model approach by
introducing additional cuts to tighten the MIDO problem relaxations. These cuts provide large
reductions in terms of the number of iterations and the overall computational time.
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