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ABSTRACT 

 
This work describes the application of a three-layer feed-forward neural network (NN) 

based approach for modeling, simulating and optimization of a real industrial plant. The industrial 
process studied is the isoprene production unit from BRASKEM. The purpose of this plant is to 
produce high purity Isoprene for obtaining synthetic and thermoplastic rubber from a C5 cut arising 
from a pyrolysis gasoline unit. The chemical process consists basically of a dimerization reactor and 
a separation column train. The basic idea of the proposed methodology is to replace 
phenomenological models by an equivalent neural network, and use this NN model to carry out a 
grid search, mapping all the region of interest in order to perform the optimization procedure. Since 
NNs are able to extract information from plant data in an efficient manner, for this work, the neural 
network model was built directly from historical plant data, which were collected every 15 minutes 
during a period of one year. These data were carefully analyzed in order to identify and eliminate 
gross and systematic errors and establish steady state operational conditions. The modeling using 
NN was carried out by parts in order to get information on intermediate streams. Then, the global 
model was built, by interconnecting each individual neural network model as a sequential simulator, 
and used to simulate and optimize the process. The optimization procedure carries on a detailed 
grid search of the region of interest, by a full mapping of the objective function on the space of 
decision variables. Thus, it is easy to choose the optimum point, identify multiple optima, check 
constraints violation, and so on. A qualitative optimization procedure was used to take in account 
product quality, safe operations conditions, and energy consumption. Moreover, this work presents 
an example of how deal with cases in which problems of dimensionality arises. The optimization of 
the entire plant involves 21 variables to be optimized, and then the global model was divided into 
the parts in order to decrease the problem of dimensionality. Each part of the model was optimized 
separately, but sequentially, using the optimal conditions from the previous optimization procedure. 
Comparisons between the model’s prediction and the experimental data were performed and 
reasonable results were achieved from an industrial point of view. Using neural network approach 
provides more comprehensive information for an engineer’s analysis than the conventional 
procedure. NN is certainly a technique of interest due to its capability of learning the system without 
knowledge of the physical and chemical laws that govern it. Moreover, the NN readily deals with 
constraints, avoids several typical numerical problems of conventional optimization tools, and is not 
computationally time-consuming. However, success in obtaining a reliable and robust NN depends 
strongly on the choice of the variables involved, as well as the quality of available data set and the 
domain used for training purposes. 
 
 
 
INTRODUCTION 
 

Methods for optimization of a given process involve the measure of goodness of a design, 
or objective function, equality and inequality constraints, as well as constraints related to safety 
consideration and those that arise from the process model equations. The objective function is 
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established from a technical and/or economic viewpoint. The equality constraints usually represent 
specifications while the inequality constraints usually represent the lower and upper bounds of the 
operating variables. 

Formal methods of optimization can be utilized to optimize a superstructure of process 
units with streams that can be turned on and off using binary variables. The mixed-integer 
formulation of the optimization problem, in principle, permits the optimizer to select simultaneously 
the best flowsheet and optimize it with respect to its continuous variables, such as the pressure 
levels, reflux ratios, residence times, and split fractions. In practice, however, most design problems 
are not solved using superstructures and mixed-integer optimization algorithms. Rather, heuristics 
together with simulation and algorithmic methods are utilized to build and analyze synthesis trees. 
Although substructures, such as networks of heat exchangers, can be optimized conveniently using 
mixed-integer methods, it is impractical to attempt the optimization of entire process flowsheets in 
this manner (Seider et al, 1999).  

Before performing optimization of a given process, it is necessary to analyze it, i.e., to 
model and simulate it. This step allows interpreting flowsheets, to locate malfunction, to predict the 
performance of processes, and to study potential changes in the operating conditions or the 
possibility of a retrofit to improve its profitability. The heart of analysis is the mathematical model, a 
collection of equations that relate the process variables, such as stream temperature, pressure, flow 
rate, and composition, to surface area, valve settings, geometrical configuration, and so on. There 
are several levels of analysis. In order of increasing complexity, they involve: material balances, 
material and energy balances, equipment sizing, and profitability analysis. Additional equations are 
added at each level. New variables are introduced, and the equation-solved algorithms become 
more complicated. So, an important prerequisite for process modeling and optimization is the 
availability of a valid and representative mathematical model that will be able to describe the system 
accurately. When available, a first-principle based model could be a natural choice and commercial 
simulators are important tools largely used on real plants and new design in order to analyze and 
optimize industrials processes. However, in most chemical engineering problems, the first-principle 
models are non-linear, complex, multivariate systems and computationally time-consuming. 
Moreover, when using the process simulators, it is important to recognize that, with some 
expectations, most stream are comprised of chemical species that distribute within one or more 
solution phases that are assumed to be in phase equilibrium. Then it is important, when using 
process simulators, to understand how they apply the theory of phase equilibrium in modeling 
streams as well as in some vapor-liquid equipment and it is known that in process design and 
optimization, up to 80% of the total computational time can be spent on evaluation of 
thermodynamic properties (Seider et al, 1999). Consequently to use commercial simulators is a very 
hard and difficulty task, mainly if fundamental knowledge about the process under consideration is 
missing or there is a lack of thermodynamics data or due to the complexity of the industrial system. 
For optimization purposes, that involve quite a high number of simulations, it is desirable that the 
model should be simulated in short times and, at the same time, should be able to describe the 
system accurately. In this sense some works have been proposed to use artificial neural network as 
a substitute for first-principle models (e.g. Nascimento and Giudici, 1998; Calderon et al., 1998; 
Guardani et al., 2001; Sternowsky et al., 2002).  

Neural networks (NNs) have been claimed to be a universal non-linear approximator and 
their application in the field of chemical engineering has grown rapidly. NNs replace the 
phenomenological models due their capability of learning the system without knowledge of the 
physical and chemical laws that govern it. Moreover, the NN readily deal with constraints, avoid 
several typical numerical problems of conventional optimization tools, and are not computationally 
time-consuming (Nascimento and Giudici, 1998). The advantage of the NN model over other 
empirical approaches will depend strongly on the degree of non-linearity of the process. It is 
possible to obtain a representative NN model based on historical input/output data and/or designed 
plant experiments. However, the success in obtaining a reliable and robust NN depends strongly on 
choosing the process variables involved, as well as the quality of the available data set and the 
domain used for training purposes. If any important process behavior is not covered by the 
observations, the NN model or any other empirical model will be a poor representation and the 
optimization probably will fail. 



 The aim of this work is to optimize the Isoprene Unit by using the NN model built from 
historical plant data as a substitute of the phenomenological models. The optimization procedure 
carries out a detailed grid search of the region of interest, by a full mapping of the objective 
functions on the space of decision variables. The detailed grid search can be achieved in 
reasonable time if the dimensionality of the problem is not so high. The problem presented here is 
an example of how it is possible to deal with cases in which problems of dimensionality arise. 
 
 
NEURAL NETWORK MODELS 
 

In the context of chemical engineering applications, neural networks are of particular 
interest as predictive models (Nascimento et al., 1994, 1999 and 2000) and for pattern recognition 
(Nascimento et al., 1997). Moreover, neural networks have become a widely used tool in areas such 
as process analysis, simulation, and control, primarily due to their inherent advantages such as 
adaptability, non-linearity, and fault tolerance especially in combination with the relatively simple 
way of use. Neural networks possess the ability to 'learn' the behavior of the process without 
actually specifying the physical and chemical laws that govern the system. In addition, neural 
network models can simultaneously employ continuous and discrete input variables (Migliavacca et 
al., 1999). The success in obtaining a reliable and robust network strongly depends on the choice of 
appropriate input or process variables, as well as the available set of data and the domain used for 
training purposes.  

The neural network employed in this study is a three-layer feed-forward network. This type 
of network, in which information propagates in only one direction, is particularly useful for steady-
state modeling. Once the network topology is specified, a set of input-output data is used to train the 
network; i.e., to determine appropriate values for the weights associated with each interconnection. 
For a given topology, the magnitude of the weights defines the network characteristics and the 
structural properties of the model. Thus, an NN has the capability to represent complex systems 
whose structural properties are unknown (Willis et al., 1991). 

The most extensive algorithm for the learning phase is the back-propagation algorithm, 
which is a generalization of the steepest descent method (Haykin, 1994; Rummelhart and J. 
McClelland, 1986). Since the NN model fitting is essentially a mathematical adaptive regression in 
which phenomenological considerations are not used, much care must be taken to validate its 
representation of the physical process and to prevent overfitting. A simple measure of the quality of 
the fitting for a given NN is based on comparisons between calculated values and experimental data 
from the test set (not used in fitting the NN). 

The computer programs for data preparation, NN fitting, modelling and optimization used in this 
work were developed at the CESQ (Center of Engineering of Chemical Systems) of the Chemical 
Engineering Department of the University of São Paulo (Nascimento, 1991, Nascimento and Alves, 
2003). 

 
 
NEURAL NETWORK BASED APPROACH FOR OPTIMIZATION 
 

The main idea is to replace the model equations with an equivalent neural network, and 
use this NN to carry on a detailed grid search of the region of interest, by a full mapping of the 
objective function on the space of decision variables. Using NN instead of a phenomenological 
model itself takes advantage of the comparative fast response by a neural network simulation. 
Moreover, the replacement of the first-principle model by an equivalent NN at the optimization step 
takes the advantage of high speed processing, since simulation with a NN involves only a few non-
iterative algebraic calculations. In this way, even a detailed grid search can be achieved in 
reasonable time, as long as there are not too many variables being optimized (in which case 
problems of dimensionality arise). This approach is more reliable, readily deals with constraints, 
avoids several typical numerical problems of conventional optimization tools and is not 
computationally time-consuming. As an additional benefit, full mapping of the objective function 
allows one to identify multiple optima easily, an important feature not presented by conventional 
optimization methods. Moreover, the constraints are easily treated afterwards since points with 



violated constraints can be recognized and classified (according to weak or hard constraints) 
(Nascimento et al., 2000). 

Once the map is obtained, it is easy to choose the optimum point, to identify whether 
multiple optima are present, to check if constraints were violated, and so on. This approach 
definitely provides more comprehensive information for an engineer’s analysis than the conventional 
non-linear programming procedure. This algorithm can be straightforwardly extended to treat a 
multi-objective optimization problem as well. 
  To solve the optimization problem the global structure of optimization is shown in Figure 1  
 

 
PROCESS DESCRIPTION 
 

The system studied is the Isoprene Production Unit from BRASKEM, the largest Brazilian 
petrochemical plant. 

 
 

 
Fig. 1. Structure of Neural Network based approach 

 
 

The objective of the Isoprene Extraction Unit is to yield high purity isoprene from a C5 cut of 
pyrolysis gasoline. The isoprene produced is to be used to obtain synthetic and thermoplastic 
rubber. An extractive distillation process is used to perform the isoprene production. The process of 
isoprene production can be divided into five sections: feed preparation, extractive distillation, solvent 
recovery, sulfur removal and fractionating. The system consists basically of a dimerization reactor 
and a separation column train. At the feed preparation section, the unit feed stream flows through a 
tubular reactor to thermally dimerize cyclopentadiene (CPD) into dicyclopentadiene (DCPD). The 
reactor effluent is fed to a distillate column for removal of heavies. This first column – First Heavies 
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Removal Column - separates one stream rich in isoprene, as the distillate, from a heavy cut, rich in 
DPCD and piperylenes, as the bottom product. This bottom stream feeds another column – 
Depentanizer Column - to separate the heavy cut into two streams: one rich in DCPD and the other 
rich in piperylenes, both of them used as raw material in resin manufacture. The distillate product of 
the first column is the feed stream of the isoprene extraction section, which uses a mixed solvent to 
separate high purity isoprene from the other compounds of the C5 stream. The first extractive 
distillation column is physically divided into two sections. The solvent is fed into the first section, and 
the distillate from the column for removal of heavies is fed into the second section. Paraffins are 
obtained as a top product and diolefins, whose main component is the isoprene, are obtained 
together with the solvent as a bottom product.   The bottom product of the first column of extractive 
distillation is fed to solvent stripper column. The top stream of this column is fed into the last stage 
of the second extractive distillation column. The ratio solvent/feed for this column is less then those 
used in the first extractive distillation column in order to get, as the product top, a stream rich in 
isoprene, that is further washed with water in a liquid-liquid extraction column – product washing 
column - in order to remove the entrained solvent completely. 

The bottom stream from the second extractive distillation column feed also the solvent 
stripper column, where the bottom recovers all the solvent used in the both extractive distillation 
columns. After heat recovery, this recycle stream is fed into the extractive distillation columns of the 
process. 

The side stream of the solvent stripper column is sent to the CPD removal column, in which 
part of the butine-2, CPD, piperylenes and 1,4-pentadiene retained with the solvent is removed by 
the top. The bottom of this column is solvent quite pure, which is returned back to the solvent 
stripper column. 

All the raffinate streams of the extraction section are washed with water in a liquid-liquid 
extractive column - C5 washing column - in order to recover the entrained solvent. The bottom 
streams of the two washing columns, that contain the extracted solvent, are fed into a distillation 
column – first solvent recovery column – in order to separate water, which has practically no 
solvent, as the bottom stream from the stream rich in solvent as the top stream. This stream 
contains more water than the rate specified for the circulating solvent and returns back to the 
solvent circuit. The water control in this stream allows the system to keep the water concentration at 
the desired value.  

The hydrocarbons from the top of C5 washing column are sent to the C5 raffinate vessel 
and then they go on to the raffinate spheres, from where they are sent to the other process unit and 
co-cracking in the pyrolysis furnace. 

Isoprene Crude from the product-washing column is fed to the sulphur removal system. 
After that, the final isoprene purification is performed in two fractionating columns: the first one is for 
removal of lights and the second one is for removal heavies, and at the top of the last one, isoprene 
product with purity higher than 99,9% is obtained.   

Figure 2 shows the Isoprene Unit schematically. 
 
 

PROCESS MODELING 
 

As said previously, modeling through neural networks consists, in general, in determining 
weights associated with each data input. These weights are values that minimize the quadratic error 
between the value calculated by neural networks and the experimental data provided as output. 
Thus, it is very important to keep in mind the procedures to be performed in order to adjust models 
by neural networks. The steps involved are described below: 
 
 

1. Analysis of the problem to be modeled by neural networks 
 

This step involves the consideration of each variable, which characterizes the process, 
including the binaries ones, since the training procedure is similar to the learning process of the 
human mind, lack of important information leads the network to determine incomplete non-linear 



relationships in the same way and its predictive capability will be lost. The use of redundant 
information should also be avoided. 

At this step, operational, environmental, safety restriction, product specifications, maximum 
and minimum limits and sensitivity of all the variables involved should be considered.  

 
 

 
Fig. 2. - Isoprene Unit 

 
 

 
2. Data Collection 

 
Quality and quantity of the process data are relevant.  Debatable confidence of the values 

could prejudice the network training and consequently the prediction step will show low quality. 
The analysis of the process was undertaken by using a one-year database. The primary 

database consisting of about 34500 observation sets of 244 variables. The data were collected 
every 15 minutes. 

 
 

3. Statistical Analysis and Data Reconciliation 
 

The neural network modeling was done directly from industrial data. However presence of 
noise and gross errors, commonly found in industrial processes would disturb the modeling and 
lower its quality. Therefore, for this work, the first step was to prepare the industrial data to a model 
fitted to detection and elimination of data containing gross errors (“outliers”) and systematic errors.  

This step is extremely important since the quality of the data has direct influence on the 
quality of the fitting performed by the neural networks. Knowledge of the process, statistical 
procedures and others based in the first principles equations are used. 

According to the average time considered for the data treatment, data fluctuation could be 
incorporated in the results. Many times, this could lead to unreliable information. In cases of errors 
with the measurement instruments over a long period of time, the average reflects this error.  

The higher frequency of data collected allowed identifying periods of steady state 
operation. The criterion adopted was a constant feed flow fluctuation of 0.2-0.3 t/h during a period of 
48 to 72 hours.    

More details of these procedures can be seen in Alves and Nascimento (2001, 2002) and 
Alves et al. (2003). 
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4. Modeling of the System  
 

With the system input and output previously selected at the treatment of the historical data 
step at the section 3, neural networks can model the process in distinct ways, among them: 
networks exist that model the whole process at once; networks that model the process by parts and 
than proceed with a connection among the several networks. In this case, the option was to divide 
the process in several subsystems, each one representing a given unit operation (reactor, distillation 
column, and so on). This methodology has as objective: 

 
• To simplify the modeling by decreasing the neural network order. 
• To make the plant data consistency better in each subsystem. Measurement 

instruments errors in one variable in one subsystem do not prejudice, most of time, the 
information to other subsystems. 

• An important part of the process recycle stream is explicit, which facilitate the technical 
and economical analysis of the process. 

 
In this way, for each subsystem, every process input and output measured variable could 

be analyzed concerning its importance and consistency. For this, Principal Components Analysis 
(PCA) was employed as an auxiliary tool in order to direct the judgement. However, the final 
decision followed the basic directives concerning the critical variables as suggested by the people of 
BRASKEM. 

The Isoprene Process Unit was divided into 10 subsystems in order to carry out the 
modeling as described previously in the item Modeling of the System: 
 

 Subsystem 1 –   Reactor 
 Subsystem 2 –   Heavies Removal First Column 
 Subsystem 3 –   Depentanizer Column 
 Subsystem 4 –   First Column of Extractive Distillation 
 Subsystem 5 –   Second Column of Extractive Distillation and Stripper Column Solvent  
 Subsystem 6 –   C5 Washing Column and Product Washing Column  
 Subsystem 7 –   CPD Removal Column 
 Subsystem 8 –   Solvent Recovery First Column 
 Subsystem 9 –   Lights Removal Column  
 Subsystem 10 – Heavies Removal Second Column   

 
After the modeling of the individual neural network, which represents each subsystem, the 

main focus is to interconnect sequentially these networks in order to generate data with the 
objective of building a response surface for all involved variables, as well analyzing the behavior of 
the most important process variables. Thus a “black box” was built, as shown as an example in 
Figure 3, containing all the networks interconnected by recycle and sequential streams.   
 

 
Fig. 3. “Black box” Scheme 
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The convergence procedure of the integrated system was performed interconnecting all the 
streams subsequentially at the corresponding unit operation or subsystem, in order to reproduce the 
industrial plant. The algorithm used for mathematical convergence was direct substitution with 
dumping factor. 
 
 Table 1 shows the variables selected and their applicability range for all subsystems. 
 
 

4.1.   Neural Network Training  
 

After the plant data analysis, the process modeling was performed as explained previously. 
This step consisted of establishing an optimal neural network structure to represent each process 
unit individually, i.e., the number of neurons in the hidden layer, the number of iterations for the 
learning process and the weights associated. 

Initially, the industrial data was divided into two sets: a learning set and a test set. The test 
set contained variables within the range of the learning set variables. Thus, no extrapolation takes 
place in the model in comparison with the test set data. Then, the NN was run with several different 
specifications, i.e., varying the number of neurons in the hidden layer and the number of data 
presentations (iterations), in order to select the best one. In this way several networks with different 
errors are generated. To avoid an overfitting of the model, choosing a minimum neuron number in 
the hidden layer (NH), as well as an adequate number of training cycles that accomplishes the 
lowest error in the test set is recommended (Pollard, 1992).  

The phase of learning or training is, basically, a problem of parameters estimation and, in 
general, the same difficulty associated to conventional optimization, such as, convergence, local 
minima and time consuming can be found. 

Results for the sub-system 1 will be presented as an example of the methodology 
employed. Figure 4 shows the neural network 1, which represents the reactor.  
 
 
 

 
 

Fig. 4. Neural Network for the reactor  
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Table 1.  Process variables and their application range 

 
 
 
 

Variable Description Min Max VariableDescription Min Max 
        
NN 1    NN 6    
        
x1(1) Feed Flow 9.5 14.52 x6(1) Top Temperature  54.81 76.96 
x1(2) %IP in feed 11.57 20.86 x6(2) Distillate Temperature 27.45 32.03 
x1(3) %CPD in feed 2.31 19.59 x6(3) %IP - Distillate 1.56 18.71 
x1(4) Feed Temperature 55.79 80.18 x6(4) %Butyne-2 - Distillate 10.16 19.87 
    x6(5) %CPD - Distillate 20.84 58.91 
y1(1) %IP in the reactor 9.8 20.24 x6(6) Bottom Flow 0.79 1.37 
y1(2) CPD feed - CPD reactor 0.2 17.45 x6(7) Bottom Temperature 89.4 95.75 
        
NN 2    y6(1) Feed Flow  1.24 2 
    y6(2) Reflux Flow  1.17 1.84 
x2(1) Feed Flow 11 14.02     
x2(2) Feed Temperature 62.61 66.51     
x2(3) %IP - feed 14.5 20.16 NN 7    
x2(4) %CPD - feed 0.83 7.04     
x2(5) Reflux Flow 31.22 53.23 x7(1) Feed Flow I 4.45 8.71 
x2(6) Reboiler Steam 7.94 11.59 x7(2) Feed Flow II 2 3.15 
    x7(3) %Butyne-2 - feed 0.34 2.18 
y2(1) Distillate Flow 5.57 8.39 x7(4) %CPD - feed 0.5 6.61 
y2(2) %IP - Distillate 24.82 37.74 x7(5) Water Flow I 1.9 3.08 
y2(3) %CPD - Distillate 0.85 3.49 x7(6) Water Flow II 1.3 3.05 
y2(4) %2M2B - Distillate 0.07 1.24     
y2(5) Bottom Flow 4.56 6.4 y7(1) Distillate Flow 1.68 2.83 
    y7(2) Top Temperature 26.8 31.6 
    y7(3) Bottom Flow  4.2 7.3 
NN 3        
        
x3(1) Feed Flow 4.61 6.11 NN 8    
x3(2) Reflux Flow 1.6 3.41     
x3(3) Feed Temperature 55.46 66.38 x8(1) Feed Flow 3.31 7.34 
x3(4) Reboiler Steam 0.83 1.33 x8(2) Feed Temperature 76.78 87.16 
    x8(3) Reflux Flow 0.6 1.95 
y3(1) Distillate Flow 2.21 3.68 x8(4) Reboiler Steam 1.26 1.77 
y3(2) Top Temperature  48.7 51.52     
y3(3) Bottom Flow 1.33 2.99 y8(1) Distillate Flow 1.17 1.79 
y3(4) Bottom Temperature 110.75126.98 y8(2) Top Temperature 101.27 106.43 
    y8(3) %H2O - Distillate 21.33 30.13 
    y8(4) Temperature# 10 105.96 110.21 
 



Table 1. (cont.).  Process variables and their application range 

 
 
 
 

 
 

Variable Description Min Max Variable Description Min Max
NN 4        
        
x4(1) Feed Flow 5.79 8.54 NN 9    
x4(2) %IP - feed 21.3 38.54     
x4(3) %CPD - feed 0.81 3.66 x9(1) Feed Flow 1.47 3.06
x4(4) %2M2B - feed 0.03 1.38 x9(2) Feed Temperature 27.58 35.52
x4(5) Solvent Flow 53.37 71.49 x9(3) Reflux Flow 9.36 13.88
x4(6) Reflux Flow 10.62 17.67 x9(4) Reboiler Solvent Flow 38.26 63.98
x4(7) Reboiler Steam 2.48 5.68 x9(5) Reboiler Solvent Input  102.05.0 104.3
     Temperature   
y4(1) Distillate Flow 1.61 3.7 x9(6) Reboiler Solvent Output  66.08 79.63
y4(2) Distillate Flow 3.15 5.13  Temperature   
y4(3) %i-C5 - Distillate 19.26 39.73     
y4(4) %n-C5 - Distillate 22.48 39.61 y9(1) DistillateTemperature 31.73 42.73
y4(5) Bottom Flow 51.43 71.1 y9(2) Bottom Temperature 58.72 64.06
y4(6) Bottom Temperature 84.95 91.23 y9(3) Bottom Flow 1.38 2.73
        
    NN 10    
NN 5        
    x10(1) Feed Temperature 60.11 63.77
x5(1) Feed Flow I 57.27 68.63 x10(2) Feed Flow 2.01 2.75
x5(2) Feed Temperature I 85.1 91.23 x10(3) Reflux Flow 11.39 15 
x5(3) Feed Flow II 0.77 1.33 x10(4) Reboiler Condensate Flow 6.95 22.7
x5(4) Feed Temperature II 90.78 95.14 x10(5) Reboiler Solvent Flow 7.85 23.24
x5(5) Solvent Flow 13 16.9 x10(6) Reboiler Solvent Output  55.21 66.94
x5(6) Reflux Flow 12.4 15.91  Temperature   
x5(7) Reboiler Steam 4.82 6.2     
    y10(1) Distillate Flow 1.86 2.6 
y5(1) Distillate Flow 2.2 3 y10(2) %CPD - Distillate 0.07 0.52
y5(2) %Butyne-2 – Distillate 0.88 1.68 y10(3) Bottom Temperature 49.2 53.59
y5(3) %CPD – Distillate 1.2 5.94     
y5(4) Size Draw 1.22 1.89     
y5(5) Temperature # 55 98.22101.07     
y5(6) Bottom Flow 68.77 80.15     
y5(7) Bottom Temperature 101.9104.06     
y5(8) %H2O – Solvent 15.09 26.17     
 (Column 04 - Bottom)       
 



 
Figure 5 shows the result of the variation of the residual error from the test set as function 

of the number of iterations and neurons in the hidden layer. The error is represented by the square 
mean deviation between the experimental and calculated values. As the optimal number of neurons 
in the hidden layer (NH) corresponds to the lowest error from the test set, NH should be 14. 
However, as a heuristic rule, is better to choose a neural network with the lowest numbers of 
neurons as possible in order to avoid overfitting. Moreover, the higher is the number of neurons in 
the hidden layer the higher is the number of weights to be adjusted. For all of these reasons, for this 
case, a neural network with 7 (seven) neurons was used without any lost of quality in the 
performance in the representation of systems by the neural network chosen as it can be seen from 
the results of the test validation and consistency.  It can also be verified the influence of the number 
of iterations on the residual error. At about over 40000 iterations the decreasing of the error is so 
insignificant to justify using more iteration.  

 
 

 
Fig. 5. Minimum error for the test set 

 
 
4. 2.  Validation of the training neural network 

 
Once the best neural network that represents the output variables was selected, tests of 

consistency were carried out in order to validate the network. The first evaluation is the analysis of 
dispersion by comparison between the calculated values and the measured data. Figures 6a and 6b 
show some examples of the comparison between measured and calculated output variable values 
for the test data set. Good agreement between modeled and measured values can be observed and 
the uniform distribution indicates absence of any tendency on fitting. 

 

 
Figs. 6a,b.  Comparison between experimental and calculated values 
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The second test of consistency of the results is concerning the distance function defined as 
the difference between the experimental and calculated values, ( )RNcalcyy ,exp − . These information 
provide the distribution of the difference of the absolute error at each point and evaluate the quality 
of adjust. More uniform distribution signifies better adjust. Figures 7a and 7b show the graphical of 
the distance function for the output variables from network 1. It can be observed a good symmetry in 
the distribution of the errors, however the model shows a good representation of the system. 

 

 
Figs. 7a,b.  Distance Function 

 
 

Then, the normal distribution of errors between the calculated and measured values is 
verified. This information evaluates the quality of the fit and the normal distribution demonstrates the 
equilibrium of frequency of the values located around the medium zero. The normal distribution 
shows the good quality of the adjustment. The histograms of the errors for the output variables of 
the network 1 are shown in the Figures 8a and 8b. 

It can be observed from the histograms a very good fit, since the distribution shows a 
normal shape and media approximately zero. 
In general, the errors evaluated show a small variability, which is an evidence of a good 
representation of the systems, by neural network model built. This fact is proving that the choice of a 
lower number of neurons in the hidden layer, in this case, does not prejudice the expected results. 
An important factor to be considered is the quality of the data. In this case, a better control of the 
variables in the industrial plant could leave also a better result. 

 

 
Figs. 8a,b.  Histograms 

 
   

Similar procedure was executed for all others sub-systems and, however each one has its 
particularities and valuables information, they will not be shown in this. For the present work, the 
selected neural network configurations are shown are in Table 2 for each process unit involved in 
this study. 
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Table 2. Neural network configurations 

 
     4.3. Global Model 

 
The global structure of the modeling using the neural network approach is shown in Figure 

9 and Table 3 shows the connections considered.  
The global model is complex due to the great number of variables and recycles involved. 

The global model generated and the structure of convergence employed (direct substitution with 
dumping factor) show good efficiency in representing the process. 

Once the neural network was trained and the global model was well adjusted, the model 
could be used to simulate the process with great speed. A great number of simulation procedures 
can be performed in seconds, which allows its use in procedures of process optimization, process 
control, on-line process control, analysis of process restriction, sensitivity analysis of variables, 
virtual analyzers, among other applications.  

 

Fig. 9.  Scheme of the NN modeling 
 

 Description 
NEXP
 learn 

NEXP 
test NVAR1 NVAR2 NH NO NCMAX ETA ALFA

NN 1 Reactor 171 79 4 2 7 2 30000 1.00 1.00 
NN 2 Column 01 56 19 6 5 13 5 25000 1.00 1.00 
NN 3 Column 12 97 37 4 4 16 4 45000 1.00 1.00 
NN 4 Column 02 109 42 7 6 19 6 30000 1.00 1.00 
NN 5 Columns 03-04 79 27 7 8 14 8 67000 0.85 1.00 
NN 6 Column 05 225 106 7 2 12 2 60000 1.00 1.00 
NN 7 Columns 06-07 282 136 6 3 13 3 59500 1.00 1.00 
NN 8 Column 10 202 95 4 4 16 4 55000 1.00 1.00 
NN 9 Column 08 163 70 6 3 15 3 50000 1.00 1.00 
NN 10 Column 09 136 58 6 3 16 3 26000 1.00 1.00 
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Table 3. Connections for modeling scheme 

 
 
PROCESS OPTIMIZATION 
 
  The constraints of quality and safety required by the process and the independent 
variables are shown in Table 4. All the units of the variables are arbitrary. 
 
 The choice of the constraints shown in the Table 4 has the following objectives: 
 

• To specify the composition of CPD and 2M2B at the Feed Preparation Section in order 
to guarantee the specification of the final product. 

• To concentrate IP at the Feed Preparation Section in order to feed the Extractive 
Distillation Section as required. 

• To specify the temperature of the bottom of the Depentanizer Column in order to avoid 
degradation of DCPD. 

• To specify the composition of 2-Butine and CPD at the distillate of the Second 
Extractive Distillation Column in order to guarantee the specification of the final 
product. 

• To specify the composition of Water at the top of the First Column of Solvent Recovery. 
The content of Water in the solvent circuit is a critical point of this unit. 

 
  Depending of the main objective to be achieved, others constraints could be considered. 
The cases that will be shown here are some examples among several possibilities of optimization 
by the model built for this system. 

Connections 
x2(1) = x1(1) 
x2(3) = y1(1) 

x2(4) = x1(3) - y1(2) 
x3(1) = y2(5) 
x4(1) = y2(1) 
x4(2) = y2(2) 
x4(3) = y2(3) 
x4(4) = y2(4) 

x4(5) = y8(1)+y5(6) – x5(5) +0,20 
x5(1) = y4(5) 
x5(2) = y4(6) 
x5(3) = x6(6) 
x5(4) = x6(7) 
y5(4) = y6(1) 

x7(1) = y4 (1) + y4 (2) + 0,2 +y6 (1) -x6(6) 
x7(2) = y5(1) 
x7(3) = y5(2) 
x7(4) = y5(3) 
x8(1) = y7(3) 
x9(1) = y7(1) 
x9(2) = y7(2) 
x10(1) = y9(2) 
x10(2) = y9(3) 

 



Table 4. – Independent Variables and Constraints for the Process Optimization. 

 
1. Objective Function and Optimization Criteria 

 
 The optimization procedure employed in this work does not require necessarily a formal 
objective function. It should perform either qualitative optimization from a set of process constraints 
and economical analysis or quantitative optimization by using an objective function that describes 
the economical goal. 
 In this step, the most important is the main objective to be achieved, for example, higher 
production for a given product specification. Thus, the objective function chosen may attempt 
operational features only, such as to specify feasible modification in certain process variables in 
order to satisfy a given requirement for others variables. 
  The main objective of this work is to establish optimal operational conditions in order to 
obtain higher production of Isoprene within of the specifications defined by the costumers. 
 

Notation Variable Description  
   
 Independent Variables  
   
x1(1) Feed Flow of the Unit  
x1(4) Feed Temperature of the Reactor  
x2(5) Reflux Flow of the COL-01  
x2(6) Vapor Flow for the Reboiler of the COL-01  
x3(2) Reflux Flow of the COL-12  
x3(4) Vapor Flow for the Reboiler of the COL-12  
x4(6) Reflux Flow of the COL-02  
x4(5) Solvent Flow for the COL-02  
x4(7) Vapor Flow for the Reboiler of the COL-02  
x5(5) Solvent Flow of the COL-03  
x5(6) Reflux Flow of the COL-03  
x5(7) Vapor Flow for the Reboiler of the COL-03  
x7(5) Water Flow for the COL-07  
x7(6) Water Flow for the COL-06  
x8(3) Reflux Flow of the COL-10  
x8(4) Vapor Flow for the Reboiler of the COL-10  
x9(3) Reflux Flow of the COL-08  
x9(4) Solvent Flow for the Reboiler of the COL-08  
x9(5) Solvent Inlet Temperature - Reboiler of the COL-08  
x9(6) Solvent Outlet Temperature - Reboiler of the COL-08  
x10(3) Reflux Flow of the COL-09  
   
 Constraints  
   
x1(3)-y1(2) Composition of CPD at R-01 Outlet < 4 
x1(2)-y1(1) IP Loss at R-01 < 4 
y2(2) Composition of IP at the distillate of the COL-01 > 23 
y2(3) Composition of CPD at the distillate of the COL-01 < 4 
y2(4) Composition o of 2M2B at the distillate ot the COL-01 < 2 
y3(4) Bottom Temperature - COL-12 < 120
y5(2) Composition of Butine-2 at the distillate of the COL-03 < 2 
y5(3) Composition of CPD at the distillate of the COL-03 < 2 
y8(3) Composition of H2O at the distillate of the COL-10 < 23 
 



2. Mathematical Definition of the Process 
 
  This step involves a choice of an appropriate optimization technique, which can be able to 
define mathematically the process. Since this problem deals with non-linear optimization with 
constraints and the interest is to show the capability of the model in providing some optimal 
operational conditions in a feasible range, the option was to use the direct search method.   

The optimization of the entire plant involves 21 variables to be optimized. The range of 
applicability of each of one is divided into equal intervals, which generates a great number of cases 
when mapping the grid of possible solutions. This makes the problem so big to be solved easily. 
Then the global model was divided into parts in order to decrease the problem of dimensionality. 
Each part of the model was optimized separately, but sequentially using the optimal conditions from 
the previous optimization procedure. The division corresponds to the following sections: 1- Feed 
Preparation; 2- Extractive Distillation and Solvent Recovery; 3- Fractionating. Figure 10 shows 
schematically this procedure. 

 
 

 
Fig. 10. Optimization Procedure 

 
 From this way, initially was performed the optimization of the Feed Preparation Section, 
i.e., NN 1, NN 2 and NN 3, followed by the optimization of the Extractive Distillation and Solvent 
Recovery Section, i.e., NN 4, NN 5, NN 6, NN 7 and NN 8 and finally it was performed the 
optimization of the Fractionating Section, i.e., NN 9 and NN 10. The optimal values generated at 
each step of the optimization procedure were used as input data for the next step. The optimization 
procedure at each step was carried out as described previously, i.e., the model built is used to 
generate a detailed grid search of the region of interest, by a full mapping of the objective functions 
on the space of decision variables. 

The optimization procedure at each step was carried out as described previously, i.e., the 
model built is used to generate a detailed grid search of the region of interest, by a full mapping of 
the objective functions on the space of decision variables. For this, each input variable (NVAR) is 
divided into an equal number of intervals and by according to number of intervals (NSTEP), the 
neural network model generates a number of cases equal to NSTEPNVAR . From these, only the 
cases that satisfy the specified constraints are selected. From these, the most convenient are 
selected in order to satisfy the criteria of a less expensive operation, i.e., the lowest energetic cost 
(qualitative optimization). In general, numerous cases that satisfy the established restriction are 
observed, but the final solution of each case studied presents only a few operational conditions that 
satisfy the criteria of a less expensive operation. Of course, many times, to satisfy all these 
conditions is not possible, and to make use of some hierarchical rules is necessary. 
  
 
RESULTS AND DISCUSSION 
 

As an example, the Table 5 shows the input variables used as the base case for the 
optimization study. 
 

 

 Optimization 
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Table 5.   Input variables for the Optimization Procedure – Base Case 

 
 
Optimization of the Feed Preparation Section 

 
The first step is to give the feed specification to the reactor, i.e., total flow rate and feed 

concentration of isoprene (IP) and CPD. Then the mapping of solution is initiated by changing the 
manipulated variables and at this step only the solutions, which satisfy some operational conditions 
are accepted. These conditions are CPD outlet concentration and IP loss from the reactor; IP, CPD 
and 2M2B concentrations in the overhead product from the distillation column and the temperature 
of the bottom of the depentanizer column as shown at the Table 5. All of these variables must be in 
a given range as specified by the personnel of BRASKEM 
 The next step is to choose qualitatively the operational conditions, which could minimize 
the energy costs, i.e., conditions that lead to a less expensive operation. These conditions are the 
lowest reflux flow, the lowest reboiler steam flow and the lowest feed temperature. The low 
temperature is also important because it avoids dimerization reactions, which increases IP loss and 
this is a not desirable situation.  
 Another point to be observed is the great variability of the feed conditions, which leads a 
different optimal operational condition. 

Table 6 shows the number of situations that satisfy all these conditions for the section 1. 
 Each one of the best operational conditions selected in order to satisfy all requirements are 

then considered as input data for the next section optimization procedure, i.e., extractive distillation 
and Recovery Solvent Sections represented by the set of followings neural network: NN 4, NN 5, 
NN 6, NN 7 and NN 8. 

 
 
 

x1(1) 13,99 x5(1) 64,67 x8(1) 4,39 
x1(2) 20,72 x5(2) 88,40 x8(2) 78,26 
x1(3) 14,90 x5(3) 1,00 x8(3) 0,79 
x1(4) 59,80 x5(4) 90,89 x8(4) 1,63 
x2(1) 13,50 x5(5) 14,02 x9(1) 2,67 
x2(2) 62,61 x5(6) 15,01 x9(2) 29,05 
x2(3) 17,33 x5(7) 5,54 x9(3) 13,05 
x2(4) 4,79 x6(1) 63,34 x9(4) 53,92 
x2(5) 44,24 x6(2) 28,48 x9(5) 102,28 
x2(6) 9,40 x6(3) 6,71 x9(6) 70,68 
x3(1) 4,89 x6(4) 17,65 x9(1) 2,67 
x3(2) 2,80 x6(5) 47,83 x9(2) 29,05 
x3(3) 65,64 x6(6) 1,18 x9(3) 13,05 
x3(4) 1,08 x6(7) 92,33 x9(4) 53,92 
x4(1) 8,24 x7(1) 7,35 x9(5) 102,28 
x4(2) 24,37 x7(2) 2,55 x9(6) 70,68 
x4(3) 2,87 x7(3) 1,46 x10(1) 61,58 
x4(4) 1,06 x7(4) 1,38 x10(2) 2,34 
x4(5) 69,91 x7(5) 2,45 x10(3) 13,22 
x4(6) 12,75 x7(6) 2,50 x10(4) 13,05 
x4(7) 3,98   x10(5) 18,16 

    x10(6) 64,19 
 



 
 

 
Table 6. - Grid Search Results for Feed Preparation Section 

 Number of conditions 
Feasible Optimal Solution 4100 
Process Conditions Satisfied 255 
Qualitative Constraints Satisfied 5 
NSTEP 4 

                                    NSTEP- Number of intervals 
 
 
 

Optimization of the Extractive Distillation and Solvent Recovery Sections 
 

For optimizing this section, the mapping of solution is initiated by changing the manipulated 
variables and only the solutions that satisfy the requested process conditions are accepted. The 
next step was to choose qualitatively the operational conditions that lead to less operational costs or 
less energy consumption. These conditions are: the lowest reflux flow, the lowest reboiler steam 
and the lowest temperatures. The flow rate conditions that maximize the isoprene product are also 
considered. 

Each different optimal condition from the previous step provided a new set of optimal 
conditions for the current optimization step. 

Table 7 shows the number of situations that satisfy all these conditions for the section 2. 
 
 

Table 7. - Grid Search Results for Extractive Distillation and Solvent Recovery Section 
 Number of conditions 
 Case 1 Case 2 Case 3 Case 4 Case 5
Feasible Optimal Solution 60000 
Process Conditions Satisfied 17658 12447 4552 7380 4837 
Qualitative Constraints Satisfied 5 5 6 5 7 
NSTEP 3 

                    NSTEP- Number of intervals 
 

Each one of the best operational conditions selected in order to satisfy all requirements for 
this section are then considered as input data for the next section optimization procedure, i.e., the 
Fractionating Section represented by the set of followings neural network: NN 9, NN 10. 
 
 

Optimization of the Fractionating Section 
 

For optimizing this section, the mapping of solution is initiated by changing the manipulated 
variables and only the solutions that satisfy the requested process conditions are accepted. The 
next step was to choose qualitatively the operational conditions that lead to less operational costs or 
less energy consumption. These conditions are: the lowest reflux flow, the lowest reboiler steam 
and the lowest temperatures. The flow rate conditions that maximize the isoprene product are also 
considered. 

In this optimization, some optimal cases from the previous section was rejected due to 
relation solvent/feed is higher then the process ideal value. This situation was observed for the 
cases with low feed flow rate. From the remaining optimal cases for the sections 1 and 2, it was 
chosen only some conditions in order to carry out the optimization of this section. 

Table 8 shows the number of situations that satisfy all these conditions for the section 3. 
 
 
 



Table 8. - Grid Search Results for the Fractionating Section 
 Number of conditions 
Feasible Optimal Solution 1024 
Process Conditions Satisfied 256 
Qualitative Constraints Satisfied 3 
NSTEP 4 

                                 NSTEP- Number of intervals;  
                                    Cases from previous sections: 3-2; 4-2; 4-4; 5-1 
 
 
 
CONCLUSION 
 
 For the studied case, the adopted methodology was to construct a global model as a 
sequential simulator by interconnecting the individual neural networks corresponding to the unit 
operations involved in the process. This approach shows very good results and makes possible a 
good understanding of the process behavior. 
 The simulation results of the global model show a good coherence with the industrial plant 
behavior, which evidences the possibility to employ the developed methodology to represent 
accurately the process of isoprene production studied. 

The optimization procedure based on a grid search of the problem using the neural network 
as an industrial plant model has an advantage of mapping all the solutions. This procedure allows 
one to define the domain where the optimal solution is located. Quantitative and qualitative solutions 
can be promptly analyzed. To have an explicit objective function in order to get optimal operation 
points is not necessary since it is possible to work only with inequalities. 

The results obtained from this work provide suggestions for the feasible operational 
conditions to apply to real unit, and by this way it is possible to demonstrate the practical features of 
this study. 
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Appendix A.  Notation 
 
ALFA Mommentum Parameter 
ETA Dumping Factor 
NCMAX Number of iterations 
NEXP 
learn Number of points for the learning set 
NEXP 
test Number of Points for the test set 
NH Number of neurons in the hidden layer 
NO Number of neurons in the output layer 
NVAR1 Number of Input Variables 
NVAR2 Number of Output Variables 
2M2B 2-Methyl-Butene-2 

C5 
Hydrocarbon with number of carbons equal to 
five 

CPD Cyclopentadiene 
DCPD Dicyclopenadiene 
H2O Water 
i-C5 Isopentane 
IP Isoprene 
n-C5 n-Pentane 
X Input Variables 
Y Output Variables 
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