
   
 
ANALYSIS AND DETECTION OF OUTLIERS AND SYSTEMATIC ERRORS FROM AN 
INDUSTRIAL DATA PLANT 

 
Rita M. B. Alves∗ and Claudio A. O. Nascimento 

  
CESQ- Center of Engineering of Chemical Systems 
Department of Chemical Engineering - Polytechnic School - University of São Paulo 
Av. Prof. Luciano Gualberto 380, tr3, CEP:  05508-900, São Paulo, SP, Brazil. 
E-mail: rita@lscp.pqi.ep.usp.br; oller@usp.br 
 
 
ABSTRACT  

 
This article describes the analysis of industrial process data in order to detect outliers and 

systematic errors. Data reconciliation is an important step of the work in adjusting mathematical 
model from plant data since the quality of the data affects directly the quality of adjustment of the 
model for modeling, simulation and optimization purposes. To detect outliers on a multivariable 
system is not an easy task. For some cases, outlier points can be easily detected, but for others, it is 
not so obvious. If the origin of the abnormal values is known, these value are immediately discarded. 
On the other hand, if an error or an extreme observation is not surely justified, the judgment in 
discarding or not these values must be based on some kind of statistical analysis. In this work, 
besides the knowledge of the process, the employed methodology involves an approach based on 
either statistics or first principle equations or a composition of both. In addition, it was used a neural 
network based approach to represent the process in order to make possible to classify  similar 
inputs and outputs in order to identify clusters and then proceed with the elimination of the gross 
errors by the similarity principle or by hypothesis testing for means. The system studied is the 
Isoprene Production Unit from BRASKEM, the largest Brazilian petrochemical plant. The analysis of 
the process was undertaken by using a one-year database. The frequency of the data collection of 
the monitoring variables was 15 minutes. 

  

INTRODUCTION 
Multivariate data analysis is not easy to define. Broadly speaking, it refers to all statistical 

methods that simultaneously analyze multiple measurements on each individual or object under 
investigation. Any simultaneous analysis of more than two variables can be loosely considered 
multivariate analysis. One reason for the difficulty of defining multivariate analysis is that the term 
multivariate is not used consistently in the literature. (Hair et al., 1998). To be considered truly 
multivariate all the variables must be random and interrelated in such ways that their different 
effects can not meaningfully be interpreted separately. 

The use of multiple variables and the reliance on their combination in multivariate 
techniques also focuses attention on a complementary issue – measurement error. Measurement 
error is the degree to which the observed values are not representative of the “true” values. 
Measurement error has many sources, ranging from data entry errors to the imprecision of the 
measurement to the inability of respondents to accurately provide information. Thus all variables 
used in multivariate techniques must be assumed to have some degree of meaurement error. 
Statistical analysis provides the methods for stating the degree of precision of our measurements, 
when those measurements represent an estimate of the “true” but unknown value of a characteristic 
(Kachigan, 1991). The impact of measurement error is to add “noise” to the observed or measured 
variables. Thus, the observed value obtained represents both the “true” level and the “noise”. When 
used to compute correlations or means, the “true” effect is partially masked by the measurement 
error, causing the correlations to weaken and the means to be less precise. The impact of 
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measurement error and poor reliability can not be directly seen because they are embedded in the 
observed variables. The researcher must therefore always work to increase reliability and validity, 
which in turn will result in a “truer” portrayal of the variables of interest. Poor results are not always 
due to measurement error, but the presence of measurement error is guaranteed to distort the 
observed relationships and make multivariate techniques less powerful.  

In addition, according to the average time considered for the data treatment, data 
fluctuation could be incorporated in the results. Many times, this could lead to unreliable information. 
In cases of errors with the measurement instruments over a long period of time, the average reflects 
this error. 

For these reasons, multivariate data analyses require  a rigorous examination of the data 
because the influence of outliers, violations or assumptions, and missing data can be compounded 
across several variables to have quite substantial effects.  Then, these article demonstrate the 
aplicability of different techniques in data analyses, such as statistical models, first principal 
equations, neural network based approache and clusters analysis. 

 
 

OUTLIERS AND SYSTEMATIC ERRORS 
 

Outliers are observations with a unique combination of characteristics identifiable as 
distinctly different from the other observations. Outliers can not be categorically characterized as 
either beneficial or problematic, but instead must be viewed within the context of the analysis and 
should be evaluated by the types of information they may provide. When benefical, outliers – 
although different from the majority of the sample – may be indicative of characteristics of the 
population that would not be discovered in the normal course of analysis. In contrast, problematic 
outliers, not representative of the population, are counter to the objectives of the analysis, and can 
seriously distort statistical tests (Hair et al., 1998). 

Gross errors or anomalous measurements of the data set may arise due to changed 
conditions during plant operation, or due to errors with the operation of measurements and 
recording devices, or simply due to errors in the information register, which may contaminate the 
valid data. On the other hand, the outlier may be simply one of the extreme values in a probability 
distribution for a random variable, which occurs quite naturally but not frequently and should not be 
rejected (Alves and Nascimento, 2001, 2002). The researcher must decide whether the 
extraordinary event should be represented in the sample. If so, the outlier should be retained in the 
analysis; if not, it should be deleted. Another class of outlier contains observations that fall within the 
ordinary range of  values on each of the variables but are unique in their combination of values 
across the variables. In these situations, the researcher should retain the observation unless 
specific evidence is available that discounts the outlier as a valid member of the population. 

If the researcher knows the origin of the abnormal values, he does not hesitate to discard 
such an observation. On the other hand, when he is not sure about the error or he does not have 
enough practice to either accept or reject an extreme observation, he must base his judgment on 
some kind of statistical analysis. The question to be analyzed is how probable it is that the observed 
differences are due solely to random sampling errors in order to reject or not the information. This 
task becomes especially complicated for complex processes where not all of the influencing 
parameters are directly accessible or where large stochastic deviations of the process variables 
lead to a considerable scattering of the measured data (Alves and Nascimento, 2001, 2002). For 
this reason, a large variety of approaches were proposed in the past, which tackle this problem. 
These are commonly based on either statistics or first principle equations or a composition of both. 
Sometimes, this procedure may become extremely complicated both if the underlying physics and 
chemistry of the process are not very well understood and if the application of a sharp statistical 
criterion for the separation of the data into one set of valid and another of non-valid values is 
impossible. This work, besides these techniques above, uses a neural network based approach 
which makes possible to classify  similar inputs and outputs in order to identify clusters and then 
proceed with the elimination of the gross errors. This approach is a simple and easy way to detect 
outliers and requires much less knowledge of the underlying physical-chemical process. 



   
 

For detection of systematic errors, first principles and stastical procedures were used and  
based on a normal distribution of variables it was possible to correct some wrong values due to fail 
on measurement instruments by comparison with laboratory data analysis. 

 
 

METHODOLOGY 
 

The available monitoring variables from the industrial process studied (Isoprene Production 
Unit) were collected every 15 minutes. According to the average time considered for the data 
treatment, data fluctuation could be incorporated in the results. Many times, this could lead to 
unreliable information. In cases of errors with the measurement instruments over a long period of 
time, the average reflects this error. The higher frequency of data collected allowed to identify 
periods of steady state operation and possible errors of measurement instruments. The analysis of 
the process was undertaken by using a one-year database. The primary database consisting of 
about 34500 observations of 244 variables 

 



   
 

The methodology applied in this work follows the structure shown in Figure 1. 

Fig.1. Data analysis methodology 
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• Gross Errors detection  
• Establishement of  Steady State Operation 
• Systematic Erros detection 

 
 

Selection of Variables of Interest  
 

The variables of interest were defined by considering the available process data and their 
importance for the process and plant operation. Then, the minimum, maximum and mean values 
were identified as well the variance for each selected variable. The variables whose operational 
range were too close to the instrument’s limits (e.g. wind-up measurements) were not included for 
analysis. 
 
 

Gross Error Detection 
 

At this step, first, a preliminary analysis for abnormal values , which may subject to 
rejection, was carried out. Then, were evaluated and eliminated the following data: null and negative 
values, values with different magnitudes, possible flat lines as those at the instrument’s limits (wind-
up measurement) and abrupt changes of the variables along the time line. This analysis was carried 
out through graphical observations of the variables as a time function, experience whether statistical 
features as much az the process, material and energy balances. The knowledge of the process also 
allowed  the elimination of some points based on possible process values or acceptable operational 
range for the corresponding variable. 

After this initial analysis, the methodology employed involves the construction of a reliable 
neural network model to represent the process and its training with few iterations. All the resulting 
data set from the previous step were included in the training data set. The construction and training 
of the NN, used in this work, were carried out using an in-house software developed by Nascimento, 
1991. 

A simple measure to assess the quality of fitness of the chosen neural network to the 
experimental data is usually a comparison of the calculated values by the neural network with the 
original experimental data. The scatter of data points around the ideal 45o –line can be used to 
judge the fit of the neural network to the experimental data. The idea to use neural networks for the 
purpose of outlier detection is based on this kind of diagram (Büllau et al.,  1999). Then the points in 
wich errors between the experimental and calculated data appear to be scattered far away from the 
majority of values are indication of consisntency problems or probably outliers not identified in the 
preliminary analysis. Hence, it only has to be shown that the probable outliers of the experimental 
data correspond to the outliers from this curve. Thus, the neural network was first of all trained for 
the entire data set and afterwards for the filtered data set. To decide if these points must or must not 
be eliminated were used some statistical analyses as clusters analysis and hypothesis tests for 
means. This procedure was repeated several times until the scattered data did not show abnormal 
points. Since the training of the network with the filtered data leads to different results from 
calculated data in comparison to the original data set, the input data base changes due to the 
filtration procedure. Figures 2 a-c show the results of this methodology for the first, second and final 
runs. 

 
 
 
 
 
 
 
 



  
 
 

         (a)         (b) 

              (c ) 
        

Fig. 2. Comparison of calculated and measured data: (a) before analysis; (b) intermediate results;  
(c) final result 

 
 

Cluster analysis is an analytical technique for developing meaningful subgroups of 
individuals or objects. It is based on the similarity principle among several data sets. For this work, a 
data set was formed by the input and output variables chosen for each process unit, corresponding 
to information from one operation register. It is expected that for a series of similar input variables, 
the process must yield similar output variables (dependent variables). When a different input or 
output variable is observed among a series of similar data, the corresponding data set may be 
rejected. Table 1 shows two exmples of cluster analysis: it can be observed, for the variable out2, 
that the values 25.24 and 20.85, in the first and second group of data respectively, must be rejected. 

In some cases a simple and direct analysis is not possible, e.g. when a given data set is 
unique or when there are only two data sets for comparison with some distinct information, then it is 
not possible to determine which one is correct. In these cases, the domains of the variables are 
extended when compared with the previous group. Although these new groups are less accurate, 
usually it is possible to discriminate the abnormal point. For this step, the hypothesis test for means 
was employed, which involves a confidence interval estimate and a hypothesis test, with 95% as the 
confidence level (Himmelblau, 1970). 

Table 2 shows the application of this methodology on the data plant analysis. The values in 
bold in groups 1 and 2 were not well adjusted during neural network training and it was not possible 
identify groups of similar data set for the cluster analysis, then,  a hypothesis test for means analysis 
was performed. Its was observed that the value 25.81 is inside the interval of confidence and the 
null hypothesis is accepted and this data must not be eliminated. On the other hand, the value 1.62 
is outside the confidence interval and the null hypothesis is rejected and this data set must be 
eliminated. 

From this way, detection of outliers or gross errors was not difficul to achieve mainly 
because the data treated were collected every 15 minutes. Figures 3 e 4 show, respectively, data 
before and after elimination of outliers as described above. 
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Table 1.  Cluster Analysis – Examples 
Input Variables  Output Variables 

in1 in2 in3 in4 in5 in6 in7 in8 out1 out2 out3 out4 
12.79 15.34 1.86 63.80 39.30 59.90 8.89 4.37 8.35 25.24 2.50 97.4 
12.80 15.40 1.88 63.80 39.20 59.90 8.87 4.35 8.35 27.21 2.63 97.3 
12.80 15.25 1.79 63.80 39.20 59.90 8.85 4.38 8.35 26.88 2.53 97.4 
12.75 15.07 1.71 63.80 39.10 59.80 8.79 4.36 8.35 27.21 2.49 97.3 

13.99 16.03 2.40 64.50 55.10 59.80 11.19 4.83 9.08 20.85 2.68 102.6 
13.82 16.15 2.93 64.30 55.50 59.30 10.79 5.06 9.16 28.84 2.89 97.2 
13.80 16.09 2.91 64.30 55.10 59.40 10.81 4.97 9.23 28.57 2.85 97.8 
13.70 16.02 2.74 64.20 55.60 58.60 11.13 4.91 9.07 30.50 2.66 95.0 
13.70 15.86 2.54 64.20 55.80 58.60 11.15 5.07 8.92 30.92 2.54 94.6 

  
 
 
Table 2. Hypothesis Test for Means 

 
 

 

Group                Input Variables     Output Variables 

 in1 in2 in3 in4 in5 in6 in7 in8 out1 out2 out3 out4 

       1  13.00 14.50 1.95 66.00 51.10 59.90 10.51 5.55 7.62 26.73 1.62 93.5
   13.00 14.57 2.77 65.90 50.60 60.00 10.25 5.37 7.72 26.15 2.68 91.6 

2  13.20 16.20 2.43 64.30 50.40 59.70 9.94 4.41 8.68 25.81 3.17 100.1 

Sample  12.00 13.58 2.38 66.00 50.20 61.20 10.40 3.77 8.78 19.91 2.77 97.2 
  12.00 14.74 2.14 65.90 48.40 61.30 10.08 3.77 8.89 20.77 2.70 98.5 
  12.09 14.13 1.75 66.50 48.60 61.00 10.23 4.04 8.58 23.51 2.07 97.5 
  13.30 14.99 2.46 66.80 48.80 60.90 10.32 5.15 8.73 24.35 2.70 94.8 
  13.48 15.74 2.37 66.80 49.60 60.70 10.47 5.35 8.76 24.60 2.47 93.8 
  13.50 15.64 2.23 66.80 50.30 60.80 10.57 5.48 8.72 25.22 2.30 93.8 
  13.51 15.02 2.01 66.70 50.50 60.80 10.56 5.51 8.76 25.23 2.26 94.0 
  13.50 15.87 1.96 66.40 49.10 60.60 10.34 5.49 8.79 25.91 2.17 94.5 
  13.00 14.50 1.95 66.00 51.10 59.90 10.51 5.55 7.62 26.73 1.62 93.5 
  12.98 13.52 2.22 65.70 51.60 60.00 10.65 5.38 7.74 26.09 2.57 93.1 
  13.00 14.57 2.77 65.90 50.60 60.00 10.25 5.37 7.72 26.15 2.68 91.6 
  13.20 16.20 2.43 64.30 50.40 59.70 9.94 4.41 8.68 25.81 3.17 100.1 
  13.00 14.06 2.05 64.30 51.20 59.70 10.27 4.28 8.65 20.93 2.66 100.5 
  13.38 14.13 1.98 64.30 50.10 59.40 10.38 4.41 8.84 20.98 2.52 100.8 
  14.01 13.99 2.60 64.50 52.30 59.60 10.97 4.40 9.45 17.98 2.94 100.9 
  14.00 14.24 2.64 64.40 52.30 59.50 11.00 4.61 9.30 18.49 2.89 99.6 
  14.00 14.11 2.57 64.40 52.30 59.50 11.00 4.62 9.30 19.09 2.89 99.9 
  14.01 15.67 2.59 64.30 50.70 59.70 10.81 4.56 9.41 19.65 2.82 99.8 

Minimum  12.00 13.52 1.75 64.30 48.40 59.40 9.94 3.77 7.62 17.98 1.62 91.60 
Maximum  14.01 16.20 2.77 66.80 52.30 61.30 11.00 5.55 9.45 26.73 3.17 100.90

mean  13.22 14.71 2.28 65.56 50.45 60.24 10.49 4.79 8.71 22.86 2.57 96.88 
Std dev  0.65 0.82 0.29 1.04 1.23 0.66 0.31 0.63 0.54 3.06 0.37 3.20 

t/n-1=18 2.11             
Mean+std dev*t 14.60 16.44 2.90 67.75 53.05 61.63 11.13 6.10 9.84 29.31 3.35 103.63
Mean-std dev*t 11.84 12.97 1.67 63.37 47.85 58.85 9.84 3.47 7.57 16.41 1.78 90.13 
 



  
 

 
Fig. 3.  Data before elimination of outliers 

 
 
 

Fig. 4.  Data after elimination of outliers  

 
 
 

Establishement of  Steady State Operation 
 

The higher frequency of data collected allowed to identify periods of steady state operation. 
The criterion adopted was a constant feed flow  for a period of two or three days. A data flutuaction 
of  0.2-0.3 ton/h was acceptable.  
 
 

Systematic Errors Detection 
 

At this step, first principles procedures were used in order to detect systematic errors. 
Knowledge of the process is also important at this step in order to evaluate these kind of error. Once 
carried out global and components material balances was possible to identify some distortion in the 
final results. At this point it was very informative to make a graphical representation of a frequency 
distribution.  

Knowing that the distributions were normal in form, we could further interpret the values in 
terms of what percent of the total number of observations fall below or above the given value. 
Although real-life data distributions, due to their finite size, can never be perfectly normal in form, 
the approximation is often close enough to allow us to use the theoretical normal distribution as a 
model for interpreting empirical populations of data. 

It is also well known that mathematic operations can help in adjusting data, i.e.,  the 
addition or subtraction of a constant value from a set of observation affects the mean but not the 
variation of the data; whereas the multiplication or division by a constant affects both the mean and 
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variation of the original distribution (Kachigan, 1991). These fundamental relationships will be very 
useful in developing and understanding subsequent statistical concepts.  

Thus, to identify the relative location of an observed value in a data distribution, besides 
the knowledge of the arithmetic average, i.e, the mean, it is necessary to know not only its deviation 
from the mean, but  that deviation must be translated into standard deviations.  

Based on these concepts above, we were able to correct systematic errors instead of 
deleting them by shifting the mean. Another criterion used at this step was the comparison between 
the plant data and the more reliable laboratory data analysis. This procedure allowed identification 
of possible errors in the measurement instruments at certain periods of plant operation and 
correction of  the wrong values. 

The task of detecting systematic errors is was more complicated and time-consuming than 
the detecting outliers, because first it was necessary to carry out global and components material 
balances for each process unit individually, then to establish periods of steady-state operation and 
after this to build histograms for each one of the balances and for each these periods, to calculate 
means and standard deviations. By analyzing these plots and results, we were able to detect 
systematic errors and delete or correct them. One way to correct them was adding or subtracting 
the variable by the mean value, which, as shown above,  did not affect the shape of the curve nor 
the variation of the data. Figure 5 shows the histogram before analysis for the global material 
balance. In  this figure  we can see the mean equal to 0.55, which signifies that once the distribution 
is normal, the only problem was the shift of the mean and based on the fact that the global material 
balance must be equal to zero we were able to correct it.  Then by analyzing the total and 
components balance we had two options: to decrease the feed flow rate or increase the output flow 
rates. Once the input flow rates show higher values, our decision was for the first option., i.e., 
decrease the input flow rate by the mean value. The final histogram has the same shape as the 
figure 5, the only difference is the mean equal to zero.  

 
 

Fig. 5.  Histogram- Data before adjusting 

 
 

Figure 6 shows data after elimination of ouliers and systematic errors. 
 

Another way to correct these errors was by observing the results of the histograms for the 
material balances for each component of interest and comparing the plant data analysis with the 
laboratory data analysis. For these we divided the data into range of steady state operation and 
then by verifying if the problem was in the input or output analysis, we tried to correct them by 
supposing that the flow rate was corrected. In some cases, when both are corrected, it was 
necessary to re-correct the flow rate again. In these case the correction was carried out by 
multiplying or dividing the data by a factor of correction. 
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   Fig. 6.  Feed flow after elimination of outliers and systematic errors 
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CONCLUSIONS 

 
Analysis of data reconciliation is an important step of the work in adjusting mathematical 

model from plant data since the quality of data affects directly the quality of adjust of data to 
modeling, simulation and optimization of processes, thus reducing measurement error, although it 
takes effort, time, and additional resources, may improve weak or marginal results and strengthen 
proven results as well. Moreover, the application of a neural network approach is a very attractive 
tool to detect outliers. 
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