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ABSTRACT 
 
This study sought to find analytic solutions to the problem of determining the optimal capacity of a 

batch-storage network to meet demand for finished products in a system undergoing joint random 
variations of operating time and batch quantity.  The raw material purchasing flow and final 
product demand flow are susceptible to joint random variations in the order cycle time and batch size.  
The production processes also have joint random variations in production cycle time and product 
quantity.  Waste regeneration or disposal processes are included into the network to treat the 
spoiled materials from failed batches.  The objective function of the optimization is minimizing the 
expected total cost, which is composed of setup and inventory holding costs as well as the capital 
costs of constructing processes and storage units.  A production and inventory method, the PSW 
(Periodic Square Wave) model, provides a unique graphical method to find the upper/lower bounds 
and average of random flows, which are used to construct terms of the objective function and 
constraints of the optimization model.  The advantage of this model is that it provides a set of 
simple analytic solutions while also maintaining a realistic description of the random material flows 
between processes and storage units; as a consequence of these analytic solutions, the computation 
burden is significantly reduced.  The proposed method has the potential to rapidly provide very 
useful data on which to base investment decisions during the early plant design stage.  It should be 
particularly useful when these decisions must be made in a highly uncertain business environment.. 
 
 
Introduction 
 
The production and inventory analysis method known as the periodic square wave (PSW) method 

was recently developed and used to determine the optimal design of a parallel batch-storage system.1   
Subsequently, the method was extended to handle a sequential multistage batch-storage network 
(BSN), 2  and further modified to handle a non-sequential network structure that can deal with 
recycle material flows in the network. 3   The key advantage of the PSW model over other models 
lies in its simple analytical sizing and timing equations. This advantageous characteristic has been 
exploited in an analysis of an integrated financial and production system. 4 , 5   The range of 
physical process structures for which the PSW model can be used has expanded from batch 
processes to multitasking batch or semi-continuous processes 6  and a multi-site batch 
production/transportation network (i.e., a large-scale supply chain system) 7 . A BSN basically 
resembles a state task network (STN) in which batch corresponds to task and storage corresponds to 
state; thus, BSNs provide an effective representation of supply chains such as purchasing, production, 
transportation and demand processes. 
One of the challenging problems in supply chain optimization is dealing with uncertainty.  Major 

business uncertainties arise from product demand forecasting, production equipment malfunctions, 
off-spec materials, changes in the prices of raw materials or finished products, and raw material 
supply shortages. A promising approach to accounting for such uncertainties is to include a 
computational mechanism to mitigate such uncertainty effects into the supply chain optimization 
model. However, the models developed to date are unsuitable for use in real applications due to 
severe computational complexity arising from the treatment of uncertainty as well as unknown 
probabilistic parameters.  Given this situation, the present study aims to develop a compact 
analytical solution to optimize the design and/or operation of large-scale supply chains with batch 
processes.  In this study, a novel optimization model resulting in simple analytical solutions with 
negligible computational burden is introduced. 

A previous study using the PSW model on a BSN developed analytical solutions of supply chain 
optimization to deal with uncertainty 8 .  The sources of uncertainty were batch size and cycle time 
variations in raw material purchasing, batch production, transportation and finished product demand 



 

processes.  The processes were classified into three types according to their random characteristics: 
(1) processes that possess uncertainty only in the cycle time; (2) processes that possess uncertainty 
only in the batch size; and (3) processes that possess joint uncertainty in both the cycle time and 
batch size.  In modern society, batch material losses associated with raw material purchasing and 
transportation processes occur infrequently; therefore, these processes were exclusively considered 
as type 1 processes in the previous study.  Production processes may be either type 1 or type 2 
processes.  Mixing or blending processes do not usually involve batch material loss, and thus were 
considered to type 1 processes.  Batch material losses do, however, occur in many reaction 
processes; hence these processes were considered type 2 processes.  Most processes had joint 
uncertainties in cycle time and batch size (type 3 process); however, such joint uncertainties were 
excluded in the previous study due to the complexity of handling them.  In the present study, an 
approach is developed that overcomes the complexity of handling joint uncertainties of cycle time 
and batch size.  Here it is considered that all processes are subject to joint uncertainties of cycle 
time and batch size; therefore all processes are type 3 processes.  Under this scheme, type 1 and 2 
processes are subsystems of type 3 and hence do not need to be considered separately.  In spite of 
the increased problem complexity associated with this approach, analytical solutions for the 
optimization problem are still available.  These analytical solutions greatly reduce the computation 
time. 
When a batch production process is susceptible to random failures, the volume of on-spec product 

material fluctuates randomly for a given feed volume.  In other words, a random amount of waste 
material is produced, as the amount of waste material equals feed volume minus on-spec product 
volume.  Therefore, the system that deals with material quantity uncertainty should include waste 
material storage units and waste disposal processes.  In this study, the BSN is modified to include a 
waste material stream in a batch process connected with a waste material storage unit and a waste 
disposal process connected with a waste material storage. 
A multi-period formulation to treat long-term trends of variables and parameters that was 

introduced in the previous study 8  is omitted in this study and, therefore, the derivation corresponds 
to single-period formulation that accounts for short-term variations of variables and parameters.  
The single-period formulation presented here can be easily expanded to the multi-period formulation, 
as was done in the previous study. 8  
 
 

Upper and Lower Bounds of a Flow with Joint Uncertainties 
 
Figure 1 shows three types of uncertainties: (a) uncertainty only in cycle time, (b) uncertainty only 

in batch size and (c) joint uncertainties in both cycle time and batch size. 
The focus of the present study is joint uncertainties.  The random properties of joint uncertainties 

are characterized by two random variables, (l)(l) ω B and , as shown in Figure 1(c), where subscript (l) 
represents the sequence of batch occurrence.  It is not necessary to know the exact distribution 
functions of (l)(l) ω B and . It is assumed that (l)B  has a symmetrical distribution function with 

BB ≤≤ (l)B  and (l)ω  has a non-symmetrical distribution function with (l)ω≤ω .  The mean 

values of (l)(l) ω B and  are 
2

BB
B

+
≡  and ω  respectively.  Two design parameters, time 

availability α  and size availability β , are introduced such that 
ω
ω

α ≡  and 
B
B

B
B

−≡≡ 2β , 

where 10 ≤<α  and 10 ≤≤ β .  As α  and/or β  approach 1, the process becomes more 
deterministic.  The concept of availability, defined as minimum value without failure divided by 
average value with failure, comes from failure modes and effects analysis (FMEA).  Note that the 



 

process with 1=β  and 10 <<α  is type 1, and the process with 1=α  and 10 << β  is type 2 
in the previous study. 8  
 

 
 

Figure 1.  Types of Uncertainty 
 
Suppose that (l)(l) ω B and  have identical independent distribution functions with respect to (l).  
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 if the least integer is chosen. 8   Where (.)Var  

is variance operator and int[.] is a truncation function to make integer.  The parameter η , called the 
occurrence number, should be an even number in order for η5.0  to be an integer.  The time 
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interval during which η  batches occur is defined as the long cycle time ω~ .  Because the sample 
means of (l)(l) ω B and  converge to their mean values during the long cycle time according to the 

weak law of large numbers, ω
α
ηωηω ==~ .  Here, the long cycle time corresponds to the least 

period within which all random effects diminish with a given confidence level.  Two more 

parameters are introduced for convenience, the average flow rate 
ω
α

ω
BBD =≡  and the total dead 

time within a long cycle time ωη
α

ωηω ⎟
⎠
⎞

⎜
⎝
⎛ −=−≡ 11~d . 

To generate the optimization formulation, the upper/lower bounds and average inventory level of 
storage units under joint uncertainties are needed.  The upper bound of the inventory level will be 
used to compute the storage size; the lower bound of the inventory level will be used in the 
optimization constraint that ensures that the inventory level is always nonnegative; and the average 
of the inventory level will be used to compute the inventory holding cost of the optimization problem.  
If the upper/lower bounds and average of all flows coming into and going out of the storage units are 
known, the upper/lower bounds and average of the inventory level of the storage units can be easily 
identified.  Note that the flow has a constant average flow rate D  measured during a long cycle 
time.  This means that in spite of the randomness, the total quantity processed during a long cycle 
time is constant.  Two extreme cases of the flow with joint uncertainties exist-(a) the Upper bound 
case and (b) the Lower bound case-as shown in Figure 2 for the case of 4=η .   
 

 
 

Figure 2. Two Extreme Cases of Flow 
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The upper bound case has η5.0  times of maximum batch size B  with minimum cycle time ω , 
η5.0  times of minimum batch size B  with minimum cycle time ω , and a total dead time d  

within repeated long cycle times.  The lower bound case has total dead time d , η5.0  times of 

minimum batch size B  with minimum cycle time ω , and η5.0  times of maximum batch size B  
with minimum cycle time ω  within repeated long cycle times. 
Note that in spite of the greater difference between these two cases, the total quantity processed 
during a long cycle time of both cases is a constant, ω~D .  Figure 3 shows the cumulative flow 
functions of the two cases.   
 

 
 
Figure 3. Cumulative Flow Functions for Two Extreme Cases. 
 
The dotted lines are the upper and lower bounds of the two extreme cases.  Note that there are two 

contacting points depending on the values of α  and β .  The integral of all flows with joint 
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where ( ) { }XX ,0max≡+ , x is called storage operation time fraction and t′  is initial start-up time. 
The average inventory level is highly dependent on the random properties of failures.  The exact 
value of the average inventory level cannot be obtained without defining the probability distribution 
functions of all random variables, which is a nontrivial task.  In this study, an intuitive approach is 

taken.  Specifically, the average of flow ∫≡
t

dtUPSW
0

F(t)  is selected as the line equidistant from 

the upper and lower bounds 8 : 
 

[ ]ωω )1(5.0),,,;( xttDxtDtUPSW −+′−=′                                (4) 
 
This selection could be the most probable 8 . 
The objective function for the design of the batch-storage network is to minimize the annualized 

expectation of total cost, which consists of the setup cost of processes, the inventory holding cost of 
storage units, and the capital cost of the processes and storage units for a given time availability, size 
availability and occurrence number in a long cycle time of each process.  The optimization 
constraints are no depletion of all storage units 
Solving Kuhn-Tucker conditions gives optimal cycle times:  
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Example Plant Design 
 
Suppose the plant that produces 3 finished products from 4 raw materials as shown at 

Figure 4.  Figure 4 also includes most input data for computation.  A design problem 
without process I7, storage J10 and J11 was studied in the previous study 3 . The waste 
materials of failed batches are collected in Storage J10.  The waste material J10 can be 
disposed through the waste disposal process J10 or can be regenerated through the 
Process I7 to raw materials J2 and J4.  The waste material of process I7 goes to storage 
J11.  The waste material J11 is disposed through the waste disposal process J11. 
 

 
Figure 4.  An Example Plant Design Problem 
 
 

Conclusion 
 
This study deals with determining the optimal sizes of batch processes and storage units 

interconnected in a general network structure when the processes are subject to joint uncertainties of 
operating time and batch quantity.  Waste regeneration and disposal processes were included into 
the network to treat materials from failed batches.  An unique graphical method was used to find the 
upper and lower bounds and average of material flows susceptible to short-term joint random 
variations in the cycle time and batch size.  In the definition of the random properties, availabilities 
and occurrence number were introduced as input parameters instead of more widely used parameters 
such as the mean and variance.  The availability is commonly used in process reliability analysis 



 

methods such as failure modes and effects analysis, and the occurrence number is proportional to the 
variance.  These parameters were chosen as they are more practical and easier to estimate based on 
human perception.  The optimization problem consisted of minimizing the expected sum of the 
setup cost, capital cost of processes/storage units, and inventory holding cost under the constraints of 
meeting random product demand and no depletion of storage materials.  The stochastic version of 
the PSW model with unique graphical analysis provided analytical solutions of the optimization 
problem.  These analytical solutions greatly reduce the computational burden, which is the major 
achievement of this study.  The analytical optimal solutions made it possible to conduct sensitivity 
analysis with respect to the input parameters, time availability and size availability with two fixed 
values of occurrence number. 
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