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Abstract

Moving horizon estimation alleviates the computational burden of solving a

full information estimation problem by considering a finite horizon of the measure-

ment data, however, it is non-trivial to determine the arrival cost. A commonly

used approach for computing the arrival cost is to use a first order Taylor series

approximation of the nonlinear model and then apply an extended Kalman filter.

In this paper, an approach to compute the arrival cost for moving horizon estima-

tion based on an unscented Kalman filter is proposed. The performance of such a

moving horizon estimator is compared with the one based on an extended Kalman

filter and illustrated in a case study.
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1 Introduction

For the last two decades, optimization-based moving horizon estimation (MHE) has found

widespread use for nonlinear constrained problems [1], [2], [3]. Compared to full information

estimation (FIE), MHE reduces the computational burden by considering a finite horizon of

the available measurements, however, it is non-trivial to summarize the effect of the discarded

data on the current states, which is the so called arrival cost. For linear unconstrained systems,

the standard Kalman filter covariance update formula can be used to express the arrival cost

explicitly. However, for nonlinear or constrained systems, a general analytical expression

for the arrival cost is rarely available. Tenny and Rawlings [4] estimate the arrival cost by

approximating the constrained, nonlinear system as an unconstrained linear time-varying

system and applying linearization and an extended Kalman filter (EKF).

Unscented Kalman filters (UKF), as proposed by Julier and Uhlmann [5], avoid the lin-

earization in the Kalman filter update formula by an unscented nonlinear transformation. By
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carefully choosing a set of sigma points, which capture the true mean and covariance of a

given distribution and then passing the means and covariances of estimated states through a

nonlinear transformation, UKF is capable of estimating the posterior means and covariances

accurately to an order higher than two. Therefore UKF can improve upon EKF performance

for nonlinear systems as has been demonstrated for some applications [5]. These advantages

of UKF over EKF form the motivation of this work where a MHE with computation of the

arrival cost via UKF is proposed and its performance is illustrated in a case study.

The paper is organized as follows: In Section 2, a brief review of MHE and UKF is

presented. The MHE with the arrival cost determined by UKF for nonlinear constrained

estimation is then proposed in Section 3. Section 4 compares the performance of the MHE

via EKF to that via UKF for nonlinear state estimation, and concluding remarks are given

in Section 5.

2 Preliminaries

2.1 Moving Horizon Estimation

From a perspective of Bayesian theory, the constrained state estimation problem can

be formulated as the solution of a full information estimation problem [6]. However, real-

time implementations of FIE are often not feasible because the size of the problem grows

unbounded with the number of points in time considered. One strategy to make the estimation

problem tractable is to bound the problem size by employing a moving horizon approach.

The optimization problem defining MHE is of the following form

min
x0,{wk}T−1

k=0

φT (x0, {wk}) = min
z,{wk}T−1

k=T−N

T−1∑

k=T−N

v′kR
−1vk + w′kQ

−1wk + θT−N (z). (1)

subject to

xk = f(xk−1, uk−1, wk−1)

yk = h(xk, uk) + vk

xk ∈ X, wk ∈W, vk ∈ V

(2)

where the sets X,W and V are constrained, N is the size of horizon length, xk := x(k; z, {wj}k−1
j=T−N )

denotes the solution of the system (2) at time k when the initial state is z, {wj}k−1
j=T−N is the

process noise sequence from time T − N to k − 1 and vk := yk − h(xk, uk). θT−N (z) is referred

to as the arrival cost, which summarizes the effect of the data {yk}T−N−1
k=0 on the state xT−N
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and makes it possible to transform the optimization problem into one of lower dimension.

However, the best choice of the arrival cost remains an open issue for MHE.

For unconstrained, linear systems, the arrival cost can be expressed explicitly since the

MHE optimization simplifies to the Kalman filter and its covariance update formula can be

used [7]. Subject to the initial condition Π0 and assuming the matrix ΠT−N is invertible, the

arrival cost can then be expressed as

θT−N (z) = (z − x̂T−N )′Π−1
T−N (z − x̂T−N ) + φ∗T−N . (3)

where x̂T−N denotes the optimal estimate at time T −N given all of the measurements yk from

time 0 to T − N − 1, φ∗T−N represents the optimal cost at time T − N and ΠT−N is computed

from the Kalman filter covariance update

ΠT = AΠT−1A
T + GQGT −AΠT−1C

T (CΠT−1C
T + HRHT )−1CΠT−1A

T . (4)

The solution to the problem described by equations (1) and (3) is the unique optimal pair

(z∗, {ŵ∗k}T−1
k=T−N ) and it can be integrated to yield the optimal state estimates {x̂∗k}T

k=T−N+1,

where x̂∗k := x(k; z∗, {ŵ∗j}k−1
j=T−N ) denotes the optimal estimate of the system at time k when the

initial state is z∗ and the estimated process noise sequence is {ŵ∗j}k−1
j=T−N .

For constrained, linear systems, general analytical expressions for the arrival cost are not

available. One reasonable strategy is to approximate the arrival cost by the one for the uncon-

strained problem. The approximation is exact when the inequality constraints are inactive.

For nonlinear systems, Tenny and Rawlings estimate the arrival cost by approximating a con-

strained, nonlinear system as an unconstrained, linear time-varying system [4]. In their work

the model functions f(.) and h(.) in Eq.(2) are supposed to be sufficiently smooth so that a

first-order Taylor series approximation of the model can then be applied, i.e. Ak := ∂f
∂x |x̂k|k−1

,

Ck := ∂h
∂x |x̂k|k−1

, Gk := ∂f
∂w |wk

and Hk := ∂h
∂v |vk

can be obtained. The arrival cost θT−N (z) in Eq.(3)

can be computed by solving the matrix Riccati Eq.(4) subject to the initial condition Π0.

This is called the MHE problem with an arrival cost computed by EKF.

The horizon length N is a tuning parameter for MHE. As a general rule, the larger the

horizon length, the more accurate the estimation results will be, however, this comes at the

expense of an increase of the computational burden. A practical rule of thumb is that the

length of the horizon should not be less than the number of the system states. Rao and

Rawlings recommend to choose the horizon length as twice the order of the system [7].
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2.2 Unscented Kalman Filter

An unscented Kalman filter is the application of the unscented transformation to recursive

estimation. In the unscented transformation procedure, a set of weighed sigma points are

deterministically chosen from the statistics of the transformation so that certain properties

of these points (e.g., a given mean and covariance) match those of the prior distribution.

These sigma points are propagated through a nonlinear mapping and then weighted means

and covariances are computed. One way to find a set of sigma points that have the same first

two moments and all higher odd-ordered central moments as the given distribution is given

by the following:

1. Augment the system state vector to an na = n+q+r dimensional vector xa = [xT wT vT ]T

to obtain its augmented means and covariances,

x̂a
k−1|k−1 =




x̂k−1|k−1

0q×1

0r×1




P a
k−1|k−1 =




Pk−1|k−1 0n×q 0n×r

0q×n Qk−1 Pwv
k−1

0r×n P vw
k−1 Rk−1




(5)

where n is the dimension of the original state vector, q and r are the dimensions of the system

and measurement noise vectors and P vw
k−1 and Pwv

k−1 are the correlations between the system

and measurement noise. For ease of computation, P vw
k−1 and Pwv

k−1 are usually set to zero.

2. Generate a set of 2na + 1 symmetric sigma points

χa
k−1 = X̂a

k−1|k−1 +
(

0
√

(na + κ)P a
k−1|k−1 −

√
(na + κ)P a

k−1|k−1

)
(6)

where X̂a
k−1|k−1 is the expanded na × (2na + 1) matrix with x̂a

k−1|k−1 as each column. κ ∈ < is a

parameter which could be any positive or negative number with the exception of κ = −na. κ

can be used to fine tune the higher order moments of the approximation. The more higher

order moments are taken into account, the less the overall prediction error will be. For a

Gaussian distribution x(k), a useful heuristic is to select na + κ = 3 [8].

After a set of sigma points is selected, each of them is propagated through the nonlinear

model functions f(.) and h(.). Weighted means and covariances are then computed from the

transformed set of points. Finally the Kalman filter gain is calculated from the covariances

and the predicted states are updated based on the available measurements. This procedure

results in the following equations defining an unscented Kalman filter:
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Prediction equations:

χx
k = f(χx

k−1, χ
w
k−1, uk−1)

x̂k|k−1 =
2na+1∑

i=1

Wiχ
x
i,k

γk = h(χx
k, χv

k−1, uk)

ŷk =
2na+1∑

i=1

Wiγi,k

(7)

Update equations:

Pk|k−1 =
2na+1∑

i=1

Wi[χx
i,k − x̂k|k−1][χ

x
i,k − x̂k|k−1]

T (8)

Py,k =
2na+1∑

i=1

Wi[γi,k − ŷk][γi,k − ŷk]T (9)

Pxy,k =
2na+1∑

i=1

Wi[χx
i,k − x̂k|k−1][γi,k − ŷk]T (10)

Kk = Pxy,kP
−1
y,k (11)

Pk|k = Pk|k−1 −KkPy,kK
T
k (12)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk) (13)

where χa = [(χx)T
1×n (χw)T

1×q (χv)T
1×r]

T and Wi are weights calculated by

Wi =





κ
2(na+κ) , if i=1;

1
2(na+κ) , otherwise.

(14)

3 Computing Arrival Cost of MHE by UKF

As mentioned in Section 2.1, algebraic expressions for the arrival cost, which account for

data not included in the estimation window, are not available for the majority of systems.

Therefore an approximation of the arrival cost is required to implement an estimator.

The main idea behind the presented MHE algorithm is to make use of the advantages that

UKF offers over EKF for approximating the arrival cost. A set of weighted sigma points χk

are selected for computing the arrival cost based on two considerations: Firstly the means and

covariances of the set of sigma points need to match those of the prior distribution at time

k = T − N in the absence of active bounds. Secondly the distribution of the selected sigma

points should be within the feasible region if bounds are active. If sk,i = ±(
√

P a
k|k)i, i = 1, ..., n

are considered as the directions along which the sigma points are selected and rk,i as the step
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sizes along these directions, then the step sizes for the selected sigma points in Eq.(6) for a

general UKF are all equal to
√

na + κ. In other words all the sigma points chosen are located

symmetrically around the current estimate. This selection of sigma points can be applied to

the MHE via UKF when the constraints are inactive. However, such selection is not adequate

when constraints are active. To better approximate the covariance and then the arrival cost

in the presence of active constraints, the set of sigma points is chosen in each direction with

a step size of

rk,i = min(
√

na + κ, (xU,i − x̂a
k|k,i)/sk,i, (xL,i − x̂a

k|k,i)/sk,i). (15)

where xU,i and xL,i are the upper and lower bounds in the direction sk,i. The central point

x̂a
k|k,0 is the same as in the general UKF formulation. The rest of selected sigma points may

be asymmetrically around the central point due to the presence of active constraints. These

sigma points are identical to those for conventional UKF for an unconstrained problem or

if the constraints are not active. However, under the condition that the current estimate is

close to the bounds, the selection process takes the constraints into account so that none of

the selected sigma points violate the constraints on the state variables.

Considering that weights of all sigma points sum up to unity and that these are the same

as those for UKF in Eq.(14) in the absence of active bounds, weights Wi for each sigma point

can be calculated as follows:

Wi =





κ
2(na+κ) , if i=1;

ari + b, otherwise.
(16)

where

a =
2κ− 1

2(na + κ)(Sr − (2na + 1)(
√

na + κ))

b =
1

2(na + κ)
− 2κ− 1

2
√

na + κ(Sr − (2na + 1)(
√

na + κ))

Sr =
2na∑

i=1

ri.

(17)

The procedure to compute the weights with constraints is similar to the work presented by

Vachhani et al. [9], where a complete mathematical derivation of the weight equations albeit

for different purposes can be found.

After a set of sigma points is obtained, each of these sigma points is instantiated through

the nonlinear model functions f(.) and h(.) to obtain the transformed sets χx
k and γk.

χx
k = f(χx

k−1, χ
w
k−1, uk−1)

γk = h(χx
k, χv

k−1, uk)
(18)
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The weighted means of system states and measurements and weighted covariances of

process and observation noise are then computed from the transformed sets. It should be

noted that the weighted predicted estimates x̂k|k−1 may not satisfy the constraints.

x̂k|k−1 =
2na+1∑

i=1

Wiχ
x
i,k

ŷk =
2na+1∑

i=1

Wiγi,k

Pk|k−1 =
2na+1∑

i=1

Wi[χx
i,k − x̂k|k−1][χ

x
i,k − x̂k|k−1]

T

Py,k =
2na+1∑

i=1

Wi[γi,k − ŷk][γi,k − ŷk]T

Pxy,k =
2na+1∑

i=1

Wi[χx
i,k − x̂k|k−1][γi,k − ŷk]T

(19)

Finally the matrix Pk is calculated from the filter gain and is used to compute the ar-

rival cost in Eq.(20). The MHE problem described in the Eq.(1) and (3) is solved with the

approximated arrival cost to obtain the updated estimates x̂k|k as the solutions:

Kk = Pxy,kP
−1
y,k

Pk|k = Pk|k−1 −KkPy,kK
T
k

θk(z) = (z − x̂k)′P−1
k (z − x̂k) + φ∗k

(20)

The proposed approach to approximate the arrival cost for MHE does not require lin-

earization of the system and measurement functions. As in any MHE filter, the matrices Q

and R can be chosen to take uncertainty in the model and measurement noise into account

and the size of the estimation horizon serves as an additional tuning parameter.

4 Case Study

To illustrate the performance of MHE based on UKF (uMHE) compared against the one

based on EKF (eMHE), both algorithms have been applied to a variety of models and a

large number of scenarios such as different operating conditions, different tuning parameters

Q and R, and different process and measurement noise. Due to space constraints only one

representative case study is shown in this section. Monte Carlo simulations with 50 sample

points have been conduct for each procedure so as not to bias results to one set of data. The

performance is evaluated by the overall mean-squared error (MSE). MSE is first averaged
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over all simulations for each time point and then over time to to take the behavior over the

entire time horizon into account.

The model of this case study is a nonisothermal continuous stirred tank reactor with

coolant jacket dynamics, where the following exothermic irreversible reaction between sodium

thiosulfate and hydrogen peroxide is taking place:

2Na2S2O3 + 4H2O2 → Na2S3O6 + Na2SO4 + 4H2O (21)

The capital letters A and B are used to denote the chemical compounds Na2S2O3 and H2O2 in

the following. The reaction kinetic law is reported in the literature to be [10]:

−rA = k0e
−E/RT CACB

where k0 is the pre-exponential factor, E is the activation energy, R is the gas constant, T

is the temperature, and CA and CB are the concentrations of species A and B, respectively.

A stoichiometric proportion of species A and B in the feed stream is assumed which results

in CB(t) = 2CA(t). A mole balance for species A and energy balances for the reactor and the

cooling jacket result in the following nonlinear process model:

dCA

dt
=

F

V
(CAin − CA)− 2k(T )C2

A

dT

dt
=

F

V
(Tin − T ) + 2

(−∆H)R

ρcp
k(T )C2

A −
UA

V ρcp
(T − Tj)

dTj

dt
=

Fw

V
(Tjin − Tj) +

UA

Vwρwcpw
(T − Tj)

(22)

where F is the feed flow rate, V is the volume of the reactor, CAin is the inlet feed concentra-

tion, Tin is the inlet feed temperature, Fw is the feed flow rate of the cooling jacket, Vw is the

volume of the cooling jacket, Tjin is the inlet coolant temperature, cp is the heat capacity of

the reacting mixture, cpw is the heat capacity of the coolant, ρ is the density of the reaction

mixture, ρw is the density of the coolant, U is the overall heat-transfer coefficient, and A is

the area over which the heat is transferred. The process parameter values are given in the

work by Rajaraman et al. [11].

The initial conditions and filter parameters are as follows:

x̂0 =
[

0.018 382 371.3
]T

, P̂0 = diag{10−7, 2.5, 2.5},

Q0 = diag{10−8, 0.25, 0.25}, R0 = 0.25. (23)

The dimension of the augmented state vector is 7 and the set of sigma points is composed

of 15 elements. The additional tuning parameter of the UKF, κ, is set to −4 for the case

study according to the heuristic mentioned in Section 2.2. For fairness of comparison, κ is
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Table 1: MSE Average over 50 Monte Carlo Simulations for Varying Measurement Noise Levels and

Horizon Lengths

N=3 N=4 N=6 N=10
MSE

eMHE uMHE eMHE uMHE eMHE uMHE eMHE uMHE

R = 25 8.45 5.64 5.56 4.94 5.14 4.76 2.66 2.52

R = 0.25 2.69 1.45 1.43 1.21 0.89 0.84 0.87 0.70

R = 0.01 1.01 0.86 0.80 0.78 0.59 0.56 0.48 0.45

not further adjusted to fine tune the higher order moments of the approximation. A non-

negative constraint is enforced on the concentration CA for both MHE formulations.

Based on the overall mean-squared error, the performance of each MHE is evaluated for

horizon lengths N=3, 4, 6, and 10. Further simulations have also been carried out by varying

measurement noise parameters for a fixed horizon length. Table 1 provides a summary of

the results. It can be seen that uMHE performs better than eMHE for all the investigated

horizon lengths and measurement noise levels. The MSEs for both uMHE and eMHE are

decreasing with increasing lengths of the horizons, i.e, the performance of both uMHE and

eMHE improves as more data are included in a horizon. If N is chosen to be large, the arrival

cost could be accurately computed with either approach. Therefore the advantages of uMHE

over eMHE decrease for large N.

5 Conclusion

This paper presented a MHE formulation where the arrival cost is computed by UKF.

The unscented transformation and a set of selected sigma points are used to compute the

covariances and then the arrival cost. The selection procedure for the sigma points is the

same as the one used for unscented Kalman filtering if the constraints are inactive, however,

a modification is used that satisfies the state variable constraints when the constraints are

active. Linearization of the model is not required for the presented approach.

While only a representative case study was included in this paper, the presented method

performed slightly better than the commonly used eMHE for all investigated cases. There-

fore, the method can be a promising alternative for approximating the arrival cost for MHE.
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