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Abstract 
 

Efficient and robust methods for phase determination in multiphase-multicomponent 
equilibrium are key tools for chemical processes simulation. The most widely used methods for 
equilibrium calculations are generally based on Gibbs free energy minimization or on simultaneous 
solving of the material balance and equilibrium equations. Both techniques exhibit numerical 
challenges due to the involvement of highly nonlinear functions/equations and their efficiencies 
depend on initialization procedures since the number and type of phases present are not known a 
priori.  
 

In this work, an equation-solving algorithm is proposed for determination of the number and 
type of phases, and their corresponding fractions and compositions, in vapor-liquid equilibrium, for 
given temperature, pressure and overall composition. The algorithm follows a decision flowchart 
that, based on actual pressure and the system's phase change pressure values at fixed temperature and 
overall compositions, determines the number and type of equilibrium phases present and the 
corresponding set of equations describing material balances and phase equilibria. Assumption on a 
bound for the number of equilibrium phases only need to be done for the calculation of the bubble 
point pressure. A solution is first exhaustively searched for the case of two liquid phases; if no 
solution is found, then a single liquid phase is considered for bubble point calculation. The 
robustness of the algorithm is based on the facts that the two-phase (vapor-liquid and liquid-liquid) 
and three-phase (vapor-liquid-liquid) isothermal flash calculations are performed only when a 
physically meaningful solution is guaranteed to exist, and good initial guesses for their 
corresponding solutions are obtained from a previous calculation of a phase change pressure.  
 

The algorithm was implemented using the Patel-Teja Equation of State and the Wong-Sandler 
mixing rules for calculation of thermodynamic properties; and numerical solutions of the resulting 
nonlinear equation sets were obtained using homotopy-based methods. Applications of the algorithm 
to typical examples for two-phase and three-phase equilibrium calculations are presented along with 
comparisons against other calculation and initialization methods in the literature. 
 
Description of the algorithm  

 
The proposed algorithm follows the decision flowchart shown in Fig. 1., that based on actual 

pressure (P) and the system's phase change pressure values (dew pressure (Pd), bubble pressure (Pb), 
and secondary dew pressure (Pds)) at fixed temperature (T) and overall compositions (zi ∀i = 1,…, 
N), determines the number and type of equilibrium phases present and the corresponding set of 
equations describing material balances and phase equilibria. The main equations used by the 
algorithm are summarized below. The description of the notation is given in a separate section at the 
end. The fugacity coefficients can be calculated using the Patel-Teja Equation of State (Patel and 
Teja, 1982) and the Wong-Sandler mixing rules (Wong and Sandler, 1992). 
 



 

Fig 1. Algorithm’s flowchart. 
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VLE equations: 
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LLE equations: 
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Equations for calculation of compositions in mole fractions in each phase:  
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Equations for calculation of phase fractions:  
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Calculation of dew pressure 
 

The dew pressure (Pd) is calculated by solving for P, vi, and li, for given T and zi, from the 
system of VLE equations (Eqs. (4) and (5)) subject to restriction (14), i.e. an infinitesimal liquid 
droplet containing the total mass present in the liquid phase: 
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The solution of this system can be obtained using homotopy continuation methods (Wayburn 

and Seader, 1987). The following initial values are proposed: 
1

1/
N

i
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zP
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= ∑  (applying Raoult’s law); 

vi = zi ∀i = 1,…, N; li = 0.01zi ∀i = 1,…, N. The solution obtained for P is Pd; and the corresponding 
values of vi and li are substituted in Eqs. (8) and (9), respectively, to calculate the composition of the 
vapor phase (yi; yi ≈ vi ≈ zi), and the composition of the first liquid droplet (xi), respectively.    
 
Calculation of bubble pressure for two liquid phases 
 

The bubble pressure (Pb) for two liquid phases is calculated by solving for P, vi, I
il , and II

il , 
for given T and zi, from the system of VLLE equations (Eqs. (1)–(3)) subject to restriction (15), i.e. 
an infinitesimal vapor bubble containing the total mass present in the vapor phase: 
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The solution of this system can be obtained using homotopy continuation methods. The 

following initial values are proposed: P = 1.2Pd; vi = 0.01zi. Liquid phase I is assumed to be richer in 
the component with the highest critical pressure (usually the aqueous phase). Liquid phase II is 
assumed to be richer in the component with the lowest critical pressure. If component j has the 
highest critical pressure, and component k has the lowest critical pressure, then the initial values are 
the following: I

jl = 0.9zj; I
kl = 0.1zk; 0.5  ,  I II

i i il l z i j i k= = ∀ ≠ ≠ ; II
jl = 0.1zj; II

kl = 0.9zk. The solution 

obtained for P is Pb, and the corresponding values of vi, I
il , and II

il  are substituted in Eqs. (8), (10), 
(11), and (13), to calculate the composition of the first vapor bubble (yi), the compositions of the 
liquid phases I and II ( I

ix  and II
ix ), and the fraction of the liquid that corresponds to phase I (β), 

respectively. The search for a solution is exhaustive, so that if no solution is found, it can be 
concluded that the probability of existence of the vapor-liquid-liquid equilibrium is too low, and the 
algorithm assumes it does not exist. 
 
Calculation of bubble pressure for one liquid phase 
 

The bubble pressure (Pb) for one liquid phase is calculated by solving for P, vi, and li, for 
given T and zi, from the system of VLE equations (Eqs. (4) and (5)) subject to restriction (15). The 
solution of this system can be obtained using homotopy continuation methods. The following initial 

values are proposed: 
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N. The solution obtained for P is Pb; and the corresponding values of vi and li are substituted in Eqs. 
(8) and (9), respectively, to calculate the composition of the first vapor bubble (yi) and the 
composition of the liquid phase (xi; xi ≈ li ≈ zi), respectively. 
 
Calculation of secondary dew pressure 
 

The secondary dew pressure (Pds) is calculated by solving for P, vi, I
il , and II

il , for given T 
and zi, from the system of VLLE equations (Eqs. (1)–(3)) subject to restriction (16), i.e. an 
infinitesimal liquid droplet containing the total mass of either liquid phase I or liquid phase II: 
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The solution of this system can be obtained using Newton´s method with mapping into the 

subspace of nonnegative real numbers, however its success is highly dependent on good initial 
values. The solution obtained from the previous calculation of the bubble pressure for two phases, 
i.e. the solution to (1)–(3) at Pb, is a good initial value if Pds is close to Pb. Since this is not always 
the case, the following methodology is proposed: using the values from the solution at Pb, determine 
the minimum between LI and LII, and assign the corresponding value to Lmin. If for example the 
minimum is LI, then replace constraint (16) with the following constraint for LI, depending on the 
magnitude of Lmin: LI = 0.1Lmin if Lmin ≤ 0.1; or LI = Lmin – 0.1 if Lmin > 0.1. If the minimum is LII, 
then the constraint is defined for LII instead. Employing Newton´s method with mapping into 
nonnegative numbers, solve the resulting system, using the solution at Pb as initial value. The new 
solution is used to recalculate LI and LII, determine the new value of Lmin (that will be lower than the 
previous one), and redefine the constraint used to replace constraint (16), as explained above. Solve 
the new system using the previous solution as initial value. This way the system is solved each time 
using a constraint with a lower value of Lmin, and the process is repeated until Lmin ≤ 1x10-10 is 
reached. The solution obtained for P is Pds, and the corresponding values of vi, I

il , and II
il  are 

substituted in Eqs. (8) and (10)–(12), to calculate the composition of the vapor phase (yi), the 
compositions of the liquid phases I and II ( I

ix  and II
ix ), and the fraction of the system that 

corresponds to the vapor phase (α), respectively. 
 
VLE calculation 
  

The system of VLE equations (Eqs. (4) and (5)) is solved to find vi and li, for given T, P, and 
zi. The solution of this system can be obtained using Netwon´s method with mapping into the 
subspace of nonnegative real numbers. The initial values proposed are those corresponding to the 
dew point previously calculated (see calculation of dew pressure). The values obtained for vi and li 
are substituted in Eqs. (8), (9), and (12), to calculate the composition of the vapor phase (yi), the 
composition of the liquid phase (xi), and the fraction of the system that corresponds to the vapor 
phase (α), respectively.     
 
VLLE calculation 
 

The system of VLLE equations (Eqs. (1)–(3)) is solved to find vi, I
il , and II

il , for given T, P, 
and zi. The solution of this system can be obtained using Netwon´s method with mapping into the 
subspace of nonnegative real numbers, however its success is highly dependent on good initial 
values. The solution obtained from the previous calculation of the bubble pressure for two phases, 
i.e. the solution to (1)–(3) at Pb, is a good initial value if P is close to Pb. Since this is not always the 
case, the following methodology is proposed: employing Newton´s method with mapping into 
nonnegative numbers, the system is solved first at a pressure P1, where P1 is close to Pb, and P1 < Pb 
(e.g. P1 = Pb – 0.05 kPa), using the solution at Pb (from bubble pressure calculation for two liquid 
phases) as initial value. Then the pressure is set to a lower value, below and close to P1, and the 
system is solved using the solution at P1 as the new initial value. This way the system is solved each 
time at a lower pressure, and the process is repeated until given P is reached. The solution values 
obtained for vi, I

il , and II
il  are substituted in Eqs. (8) and (10)–(13), to calculate the composition of 

the vapor phase (yi), the compositions of the liquid phases I and II ( I
ix  and II

ix ), the fraction of the 
system that corresponds to the vapor phase (α), and the fraction of the liquid that corresponds to 
phase I (β), respectively. 



 
LLE calculation 
 

The system of LLE equations (Eqs. (6)–(7)) is solved to find I
il  and II

il , for given T, P, and zi. 
Based on the arguments discussed for the VLLE calculation, the following methodology is proposed: 
using Newton´s method with mapping into nonnegative numbers, the system is solved first at a 
pressure P1, where P1 is close to Pb, and P1 > Pb (e.g. P1 = Pb + 0.05 kPa), using the solution at Pb 
(from bubble pressure calculation for two liquid phases) as initial value. Then the pressure is set to a 
higher value, above and close to P1, and the system is solved using the solution at P1 as the new 
initial value. This way the system is solved each time at a higher pressure, and the process is repeated 
until given P is reached. The solution values obtained for I

il  and II
il  are substituted in Eqs. (10), (11), 

and (13), to calculate the compositions of the liquid phases I and II ( I
ix  and II

ix ), and the fraction of 
the liquid that corresponds to phase I (β), respectively. 
 
Notation 
 
li : fraction of the moles of component i (∀i = 1,…, N) in the system that are in the liquid phase 

I
il : fraction of the moles of component i (∀i = 1,…, N) in the system that are in liquid phase I   
II
il : fraction of the moles of component i (∀i = 1,…, N) in the system that are in liquid phase II 

LI : fraction of the moles in the system that are in liquid phase I 
LII : fraction of the moles in the system that are in liquid phase II 
Lmin: minimum between LI and LII 
N : total number of components 
P : pressure 
Pb : bubble pressure 
Pd : dew pressure 
Pds : secondary dew pressure 

sat
iP : vapor pressure of pure component i. 

T : temperature   
vi : fraction of the moles of component i (∀i = 1,…, N) in the system that are in the vapor phase 
xi : mole fraction of component i (∀i = 1,…, N) in the liquid phase 

I
ix : mole fraction of component i (∀i = 1,…, N) in liquid phase I   
II
ix : mole fraction of component i (∀i = 1,…, N) in liquid phase II 

yi: mole fraction of component i (∀i = 1,…, N) in the vapor phase 
zi: mole fraction of component i (∀i = 1,…, N) in the system  
 
Greek symbols 
 
α : fraction of the moles in the system that are in the vapor phase 
β : fraction of the moles in the liquid that are in liquid phase I 
ˆI
iφ : fugacity coefficient of component i in the liquid phase I mixture.  
ˆII
iφ : fugacity coefficient of component i in the liquid phase II mixture 
ˆL
iφ : fugacity coefficient of component i in the liquid phase mixture  
ˆV
iφ : fugacity coefficient of component i in the vapor phase mixture 
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