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Introduction 
 

Advanced Process Control (‘APC’) has become widespread and even a commodity tool 
for certain continuous processes. APC encompasses model based control solutions, where 
control and on-line optimization go hand in hand, and a Model Predictive Controller is often 
used for this purpose. 

The advantage of this technology is straightforward: while delivering a significantly 
improved process control result, it enables to optimize your process on-line taking operational 
constraints into account.   

However, until recently these tools could not be applied to chemical reaction batch 
processes. The reasons for this are twofold: on the one hand the general APC tools as applied 
in continuous processes cannot deal with the more complex nature of batch processes 
(changing dynamics, nonlinear responses). On the other hand the modeling effort and related 
cost would also be prohibitive to implement an APC project on batch processes with a 
reasonable return on investment. This would even be more true in a multi-product multi-reactor 
environment.  

Therefore a new strategy has been developed for chemical batch processes. A hybrid 
modeling solution is proposed which needs a limited engineering input, and delivers a high 
precision representation of the process. The hybrid model contains both a rigorous mechanistic 
process description as well as a parametric part. The mechanistic part is used to model often 
encountered devices in a batch process, like half tube jackets, coils, external heat exchangers, 
condensers and an overall mass and heat balance. The parametric part is used to describe the 
reaction kinetics.  

This non-linear model is then used within the Model Predictive Control solution. This 
solution contains an EKF based observer, as well as an interbatch control and observer 
solution. 

Objective of the control solution is to deliver improved control performance, however in a 
lot of applications batch cycle time optimization is the prime objective. As such the reaction 
phase of the batch is minimized while keeping the process within the allowable constraints 
(available heat exchange duty, adiabatic temperature, quality aspects…). 

The above mentioned APC methodology has now been applied to several industrial 
processes. An application case at CYTEC Industries Inc. is shown on a polyacrylate 
polymerization process. 
 
 

Some observations on batch control challenges 
 

Batch reactor processes are commonly praised for their flexibility. Indeed, with limited 
variety in hardware equipment, a wide range of products can be produced, ranging from 



performance polymers to specialty chemicals, from pharmaceutical intermediates to food 
ingredients. This flexibility however results in much more complex operation. Recipes must be 
defined and implemented, while production scheduling is a challenge in a multi-reactor multi-
product environment. Also the control task can be more complex since the process can no 
longer be characterized having a single process gain, but the changing product characteristics 
throughout the batch cause the gains to vary dynamically. This nonlinear behavior has made 
traditional linear MPC technology inadequate for solving the problem. One can only conclude 
that a different type of model is required. 

Different types of nonlinear models come to mind. On the one hand, one could choose 
very descriptive mechanistic models based on phase descriptions and heat and mass 
balances of all the components in the reactor. These models can give a very accurate 
description of all phenomena occurring within the reactor. To be able to be used within an APC 
application these models should have a guaranteed short calculation time, be stable at all 
times, be validated and tuned on the process, and have a limited numbers of states. Even 
more importantly, although not always trivial, they should contain a proper input-output 
description for control. One has to be sure that all relevant control degrees of freedom and 
interactions are well modeled. If all these criteria are met, a mechanistic model approach may 
be used.  

The financial picture however looks a bit different if the rigorous model has to be 
developed from scratch for a specific APC application. This is especially true in a multi-product 
reactor, where a given recipe is only utilized a limited time per year. If the APC application is 
commissioned for that recipe, the payback should be generated on that recipe as well. To cut 
project costs, modeling efforts must be reduced as much as possible. A simple modeling 
technology requiring limited implementation time is needed.  
 
 

APC for Batch applications 
 

Standard techniques which are applied in continuous APC applications offer no solution 
for batch processes. In order to enable online optimization of batch processes, novel modeling 
and control techniques must be developed. 
 

Dedicated Batch APC Models: Hybrid Modeling 
 

Optimization is implicitly embedded in a Model Predictive Control solution. A process 
model is required that features a short design time and sufficient accuracy to be used within a 
control and on-line optimization application. For reasons explained above, a purely mechanistic 
model does not address these requirements. A black box approach, which represents the 
opposite extreme, is not straightforward either. Linear black box models do not work in a highly 
nonlinear application as a batch process. General nonlinear black box functions (e.g. neural 
nets) possess insufficient extrapolation capability. It is the assertion of the authors that a hybrid 
combination of mechanistic and black box modeling delivers the best of both worlds.  

The envisaged model should give a good representation of the heat balance of the 
process. This will automatically include information on conversion, build up of unreacted feed 
material, and adiabatic run-away temperature and pressure.  

In fact, most batch reactors share common principles. All of them use heat exchange 
devices, like jacketed reactors (half pipes or other design), coils or external heat exchangers. 
In some cases vapor builds up and a condenser is used. In a fed-batch or semi-batch reactor, 



mass is accumulated in the reactor while the reactor is being filled. All these principles can be 
modeled in a general mechanistic way that requires only a few parameters to be tuned to the 
actual process. This general mechanistic model can be applied to most batch reactors and 
drastically decreases the engineering time since one can take the advantage of general pre-
built modules.   

On the other hand the reaction scheme and kinetics, the phase behavior, etc. differ from 
process to process. Mechanistic modeling of these phenomena is the most time consuming 
part. Therefore a specific black box approach is chosen which uses a surface map to relate 
overall conversion and temperature to reaction energy or conversion speed (Figure 1). Some a 
priori knowledge is built into the map as well. 
 

 
Figure 1. Reaction Surface Map 

 
Experience with this method has revealed that combining the rigorous model part with 

the black box reaction part, results in a very accurate process model demonstrating nice 
extrapolation capability. All heat balance related issues such as reaction energy, conversion, 
reactant excess, and adiabatic temperature are taken into account. Design times are short as 
most of the information can be extracted from historical data and a limited number of tests on 
the process. Once a model has been validated on the process, generating extra models for 
new products on the same reactor is only a small effort. 

 
Nonlinear MPC (NL-MPC) 

 
Given the fact that the proposed model format is not standard and certainly nonlinear, 

traditional linear MPC principles, calculations, and procedures do not hold. A nonlinear MPC 
(INCA® for BATCH) solution is required.  

The proposed strategy splits the NL-MPC problem into two stages: a prediction step and 
an optimization step. First a nonlinear prediction is made with the aid of the hybrid model. 
Based on the previous process inputs and the previous optimization result, a prediction 
emerges of the process behavior over a horizon into the future. Along this predicted batch 
trajectory a set of linear dynamic models is automatically provided. These models are 
combined into a linear time variant model (LTV model).  

In the second stage this linear model is used to optimize the process. Based on the 
nonlinear prediction, the optimization observes the gap between where the process is heading 
and where the process is desired to be. The optimizer minimizes this gap by taking into 
account operating constraints on process inputs and process variables such as adiabatic 
temperature, and reactant excess. The model used during the optimization is the LTV model, 
enabling fast calculation speed since a QP algorithm can be applied. An Extended Kalman 



Filter technology based observer modifies model states such that the hybrid model stays on 
track with the actual running batch.  

In addition to the aforementioned optimization and observer, additional modules are 
optionally executed in between subsequent batches. Two of these modules are an inter-batch 
observer and an inter-batch controller. Both deal with phenomena which are only visible over 
longer time periods than one batch. The interbatch observer adapts the hybrid model in case of 
fouling or catalyst deactivation which only become tangible after several batch runs. The 
interbatch controller modifies the optimization targets and constraints from batch to batch to 
maintain the product at or within quality specifications. These specifications may be affected 
due to slowly varying feedstock quality and become visible only after a lab sample is analyzed 
after the batch has ended.  
 
 

Application Example 
 

INCA® for BATCH was applied on a water based polyacrylate process at CYTEC 
Drogenbos, Belgium. The site contains multiple workshops, amongst others a water based and 
solvent based polyacrylate process. It is a typical multi-product multi-reactor environment. The 
solvent based polyacrylate workshop counts 5 reactors covering 60 product grades, while the 
water based polyacrylate workshop produces 70 different product grades using 5 reactors. 

The water based polyacrylate process is an exothermal fed batch process taking place 
under atmospheric conditions. A process lay-out is shown in Figure 2. Heat is exchanged by 
the means of a half-tubed jacket. The jacket temperature is controlled making use of a 
frequently applied configuration: a circulation loop with a fresh cooling water inlet to decrease 
the circulation water temperature and a heat exchanger to increase the circulation water 
temperature. Raw materials are dosed making use of premix vessels. An agitator is used to 
achieve proper mixing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Batch reactor Layout 
 
The project was implemented via a number of phases. In order to gather data for model 

development, a logging environment was set up to enable data logging at high sample rates 
without data compression. The logging software was installed on a PC and connected to the 
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plant DCS via OPC. The next stage demonstrated significant benefits of the hybrid model 
approach.  If using traditional model identification techniques, tests spanning many batches 
would have been required but the hybrid model approach only required tests to be executed 
during two batches. During a first batch a slightly elevated temperature profile was used. In a 
second batch a step disturbance was applied to the reactor feed flow (Figure 3). Both 
experiments were discussed thoroughly with key process engineers. The amplitudes of the 
applied changes were selected such that they would have minimal impact on the process 
operation and especially the batch-end quality, while the effect would still be observable in the 
measurements. 

In a next step the hybrid model was identified. This was largely done based on historical 
data, enriched by the data delivered by the above described tests. The resulting reactor 
temperature profiles (hybrid model versus measurements) for two different product grades are 
shown in Figure 4. Hybrid model derivation for extra product grades becomes a smaller task, 
since large parts of the models can be reused. 

 

 
Figure 3. Applied tests to identify hybrid model 

 

 
Figure 4. Modeling Results 

 
Comparing to the measured signal, one can notice a slow drift on the model simulation 

for the second product shown in Figure 4. To improve model predictions, an Extended Kalman 
Filter based observer is tuned. The observer updates model states such that the model stays 
in track with the process despite unmodeled disturbances and model shortcomings. Next, a 
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complete offline simulator was set up, consisting of a controller, an observer, and a modified 
hybrid model to represent the process-model mismatch. Based on this environment, controller 
tuning was performed and several process scenarios were analyzed. This simulator was then 
used for the Factory Acceptance Test where satisfactory performance for multiple case studies 
and sensitivity analyses was demonstrated. The control environment supports a broad set of 
different product grades, each represented by its dedicated hybrid model.  

Due to the computationally intensive calculations required by the technology described 
in this paper, the controller is implemented in a separate, dedicated PC. This PC is typically 
connected to the process DCS or PLC via OPC. A separate interface is designed on the 
control system operator screen to permit the operator to interact with the application. Under 
normal operation, batch parameters are defined when the batch recipe is scheduled. It is 
especially worth noting that this is also when the choice to utilize MPC is defined.  The recipe 
ensures that DCS/PLS controllers are switched into the proper input mode (local, remote, 
supervisory) and the MPC controller is then automatically started at the proper moment. At any 
given moment the operator can decide to switch off the MPC controller, and then a fallback is 
initiated towards a safe PID control solution. In rare cases of PC hardware, communication, or 
software malfunction the fallback is also triggered by means of a watchdog timer.  

The results for two different product grades are discussed next. In Figure 5 the 
implementation results are shown for a first product grade. In this case limited operational 
freedom was available due to product quality related constraints. Therefore the focus was 
geared on batch reproducibility and product consistency. It is shown that a hybrid model 
predictive approach enables a tight process control, reducing the variance dramatically 
compared to conventional PID control. Mainly the overshoot at the start of the introduction 
phase was recognized as being critical to control the desired product end-quality parameters. 
Elimination of this overshoot was therefore essential to improve product consistency. 
 

 
Figure 5. MPC results for polyacrylate product grade 1 

 
In Figure 6 the results for another product grade are shown. In this case the focus was 

directed upon batch cycle time reduction. The MPC controller is configured such that the feed 
flow is maximized, while guaranteeing that at the current time instant and in the future the 
available cooling power will not be exceeded. The eventual control result shows an operation 
switching between the cooling constraint and the feed flow constraint, while keeping the 
process temperature on the setpoint. As a result 60 minutes batch cycle time is eliminated.  
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Figure 6. MPC results for polyacrylate product grade 2 

 
 

Conclusion 
 

In this paper an industrial application is shown of a hybrid non-linear model predictive 
control technology. The solution is specifically geared towards batch reactor systems, and 
aims at achieving two goals. At first a technical solution is provided to address the non-linear 
dynamical complexity of a batch reactor, encompassing a modeling and optimizing control 
solution. Secondly, the technology is set up to minimize modeling and configuration time, in 
order to achieve acceptable payback time in an industrial multi-reactor multi-product setting. 
Industrial results for different polyacrylate product grades show enhanced batch reproducibility 
and significant cycle time reduction. 
 
 
 


