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Abstract 
 
 A model predictive control algorithm was developed for regulating glycemia in subjects 
with type 1 diabetes mellitus using exogenous insulin infusion to reject disturbances from oral 
carbohydrate consumption. A clinically validated nonlinear physiological model of glucose 
metabolism was linearized and served as the basis for the controller. The control law was 
developed using multi-parametric programming techniques, so that the online optimization 
problem was reduced to the evaluation of an affine function. The controller was tuned for 
optimal response to mixed-meals of up to 40 g carbohydrate. The robustness of the controller 
was then evaluated for mismatch in the size (25%) and timing (15 minutes) of the meal. Due to 
the computational ease with which this control law was evaluated online, it would be suitable 
for implementation on a personal digital assistant with limited computational capacity. 
 

Introduction 
 
 Diabetes mellitus is a disease characterized by insufficient endogenous insulin 
production, leading to poor regulation of plasma glucose concentration. The resulting chronic 
hyperglycemia can lead to macro- and micro-vascular complications, e.g., stroke, heart 
attacks, blindness, and kidney disease. An indication of the quality of glycemic regulation, and 
thus the likelihood of such complications is given by the quantity of glycosylated hemoglobin 
(A1C). Successful control consists of normalizing glycemia, and thus reducing A1C to below 
6.0% [1]. 
 Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results in the 
destruction of the pancreatic beta cells found in the islets of Langerhans. These cells are 
responsible for the production of insulin, one of the hormones that regulate plasma glucose 
concentration. In order to regulate glycemia in T1DM, insulin must be delivered exogenously. 
Current therapeutics involve manually taking a capillary blood sample (a finger stick 
measurement) to determine the blood glucose concentration, then injecting an appropriate 
amount of insulin depending upon the subject and the situation, e.g., at meal time. For this 
method to be effective, this process must be repeated up to 12 times daily. Such a high level of 
discipline is burdensome, and thus patient adherence is typically lacking. As a result, glycemic 
control is inadequate and complications of T1DM occur. As an indication of the worldwide 
scale of the problem, there are 1.5 million people with T1DM in the United States alone [2]. 
 Recent technological advances have brought continuous real-time subcutaneous 
glucose sensors and continuous insulin infusion pumps, which in combination with rapid-acting 
insulin analogs provide a framework for a closed-loop controller suitable for use in ambulatory 
conditions [3]. Real-time glucose sensors measure the glucose concentration in the 
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subcutaneous tissue, and typically offer an updated glucose measurement every five minutes; 
this sample resolution is in line with that required for an algorithm to achieve efficient closed-
loop control via subcutaneous insulin delivery [4]. 
 The first algorithms for closed-loop control of glycemia were developed in the 1970s, 
most notably those used with the glucose controlled insulin infusion devise called the 
Biostator® [5]. These early algorithms relied on intravenous insulin and dextrose delivery, 
along with intravenous glucose measurements. Such invasive methods were therefore only 
suitable for use in an in-patient hospital setting. Currently, robust control algorithms for a 
closed-loop device suitable for use in ambulatory conditions are not available [6]. The main 
challenges involve the large lag time in insulin action of subcutaneously delivered insulin on 
the plasma glucose concentration, and sustained disturbances to glucose levels after the 
absorption of a meal. For these reasons, model predictive control (MPC) has been identified as 
a highly promising controller structure, and has been applied in a clinical environment [7]. The 
MPC framework also allows for the explicit inclusion of constraints [8], which are pertinent to 
the physical capabilities of the insulin pump. 
 In order to mitigate the problems involved with solving large optimization problems 
online, multi-parametric programming techniques can be applied which lead to the solution of a 
single optimization problem offline; the online problem thus reduces to reading a lookup table, 
and the evaluation of an affine function [9]. Such techniques are germane to the first 
generation of closed-loop devices for managing glycemia for two reasons: 

(i) The first commercially available artificial beta cells will no doubt have limited 
computational capacity. 

(ii) There should be an easy way to evaluate systematically controller outcomes under a 
range of expected conditions before application. 

Such prior evaluation would be a requirement of the Food and Drug Administration (FDA) for a 
device to be approved for commercial use [10]. This algorithmic approach has previously been 
used to develop a multi-parametric MPC (mpMPC) algorithm in the context of diabetes, albeit 
for intravenous insulin delivery using a simplified model of insulin action [11]. 
 In this paper, a simulation study was carried out to show the utility of mpMPC when 
applied to regulation of glycemia. An established physiological model of glucose metabolism 
[7, 12] characterizing orally ingested carbohydrate and subcutaneously injected insulin was 
used represent a person with diabetes. A control law was then developed using mpMPC. 
Simulations were carried out to determine optimal controller tuning in the case of meal 
(disturbance) rejection. The resulting controller was then tested for robustness by introducing 
elements of plant/model mismatch typical of a person with diabetes. 
 

Experimental Methods 
 
 This section describes the design of the simulation study and the implementation of 
mpMPC. The simulation study was designed as an in silico closed-loop clinical trial. A 
physiological model represents the subject with T1DM, which is subject to meal ingestion and 
insulin delivery determined by the control algorithm. 
 
Simulation model 
 The physiological models of glucose-insulin kinetics and subcutaneous insulin 
absorption presented by Hovorka et al. [7] and Wilinska et al. [12] formed the virtual T1DM 
subject. Orally ingested glucose is absorbed by the gut into plasma using a two-compartment 
fundamental model. Subcutaneously injected insulin is absorbed into the plasma from a fourth 



order model incorporating saturation effects. The glucose effects are described by fifth order 
model including three insulin sensitivity effects, endogenous glucose disposal and production, 
and insulin dependent and independent effects. The nonlinear effects of the model are 
assumed representative of those observed in vivo. 
 
Controller development 
 The formulation of the control algorithm is a two part process: 

i. Formulation of the objective function as a constrained optimization problem 
ii. Reformulation of the objective function as a multi-parametric program and its 
solution 

 The objective function for the MPC problem includes quadratic penalties for the vector 
of predicted deviations from setpoint of glucose measurements (y) and the vector of future 
insulin delivery rates (u). The cost, J, is written as 
 . (1) 
The model predictions are given by a linearization of the plant around nominal operating 
conditions, which correspond to fasting and basal insulin delivery; the state-space 
representation of the model at time k is 

 , (2) 

where x represents the state vector, u represents the inputs, and y the measurement; all are 
deviation variables. Physical restrictions on insulin delivery corresponding to the mechanical 
limitations of the insulin pump are included as constraints on the manipulated variable 

 . (3) 
Constraints are also given on the region of state-space in which a solution is required: 

 , (4) 
where xmin and xmax represent the minimum and maximum values permissible for each state in 
the state vector. 
 In order to apply multi-parametric programming techniques the objective function must 
be reformulated as a standard mpQP, 

  (5) 

where x0 is the state vector at the current time, and z is a linear transformation of the 
manipulated variable, defined as 

 . (6) 
Matrices F, G, H and W are obtained from A, B, Qy, and R. An explicit solution to this 
optimization problem exists [9]. The solution consists of multiple regions within state-space; 
within each region the optimal values of the manipulated variables, u, are an affine function of 
the current state vector x0. The algorithm used to determine the regions in the solution and the 
corresponding control law is described by Pistikopoulos et al. [13]. Transformation of the 
parametric solution back into state-space gives an explicit control law for all possible initial 
conditions of the state vector. Full mathematical development of this method has been carried 
out several times in the literature [9, 11, 13]. 
 
Controller object 
 The solution to the multi-parametric programming problem was found using the Multi-
Parametric Toolbox [14], and interfacing software, YALMIP [15]. The solution consists of a 



polytope defining the control law. The control law consists of regions defined in state-space, 
essentially a lookup table. Each region, or entry in the lookup table contains an affine function 
of the current state; the evaluation of this function gives the optimal control moves to be 
implemented. 
 In order to evaluate the control law, the state vector is evaluated using the latest 
measurements, thus determining the appropriate region, or lookup table entry. The affine 
function associated with that region is then evaluated with the current state vector, thus 
determining the control move. A graphical example of control law evaluation is given in 
Appendix A. 
 

Simulated Results 
 
 Using the controller and simulated subject described in the previous section, controller 
tuning was performed and robustness due to expected levels of uncertainty in key variables 
were investigated. The goal was to investigate the rejection of a single meal and to ensure 
long-term controller stability over a period of 12 hours. 
 Simulations were performed with measured disturbances of 10-40 g CHO mixed-meals. 
For these announced disturbances, the prediction horizon and weighting matrices were tuned. 
In order to test for robustness, mismatches of 25% were introduced to the CHO measurement 
and of 15 minutes to the disturbance timing. 

 
Figure 1: Closed-loop responses to an announced meal of 40 g CHO. TOP: glucose trajectory. Increasing 
the prediction reduces hyperglycemia and hypoglycemia. BOTTOM: insulin delivery. Increased prediction 
horizon allows more aggressive control action at meal time. 
 
Prediction horizon 
 An appropriate choice of prediction horizon is one in which the full effects of current 
inputs are observed, i.e., the open-loop speed of response. Based on this principle, a 
prediction horizon of three hours is appropriate, as is corroborated by Figure 1. 
 



Weighting matrices 
 The weighting matrices on glucose error, Qy, and insulin delivery about basal, R, 
determine how aggressive the controller is; if large penalties are applied to glucose error, an 
aggressive controller will result; if large penalties are applied to insulin delivery about basal, a 
more conservative controller will result. In the case where Qy and R are constant over time, the 
ratio Qy/R is the single tuning parameter. As a general rule, a controller should be more 
conservative if there is known to be a significant plant/model mismatch, or if the consequences 
of large deviations from setpoint are severe. 
 In this nominal case with a model based on the Jacobian of the plant, the plant model 
mismatch should be small; hence, the deciding factor in tuning should be avoidance of 
hypoglycemia. Figure 2 shows the effects of various Qy/R with a three hour prediction on 
controller performance. The best Qy/R is equal to unity, since this setting avoids hypoglycemia 
and hyperglycemia. 

 
Figure 2: Closed-loop responses to an announced meal of 40 g CHO and the effect of varying the 
input/output weighting matrices. TOP: a less aggressive controller minimizes the approach to 
hypoglycemia while remaining below the hyperglycemic threshold. BOTTOM: the more aggressive 
controllers deliver insulin as a pseudo-bolus in order to minimize the glycemic excursion. 
 
Robustness 
 Uncertainty is not only attributed to plant/model mismatch, but also to inputs. These 
input uncertainties arise whenever a meal is announced, specifically the quantity of 
carbohydrate in the meal and the exact time of the meal. It is not that meal size and time are 
impossible to determine exactly, but that the announcement itself is burdensome and a typical 
subject with T1DM does not record these figures precisely. Mismatches of 25% were 
introduced to the CHO measurement and of 15 minutes to the disturbance timing. Figures 3 
and 4 show how time and size mismatches affect the controller tuned with Qy/R=1. Combining 
these effects lead to hypoglycemic events with the Qy/R=1, so the controller was further 
detuned. Figure 5 shows the combined effects of meal size and time mismatch with Qy/R=0.5. 
Clearly detuning is necessary to avoid hypoglycemia in the case of uncertainty. 
 Based on the limits of uncertainty previously described, it is important to ascertain the 
greatest amount of CHO that can be consumed without inducing hypo- or hyperglycemia. 
Figure 6 shows the upper and lower bounds of the glycemic trajectory for meal sizes of 10, 25, 
and 40 g CHO. For this simulation model and these conditions of uncertainty, the maximum 
meal size is 35 g CHO. This meal size is very low in CHO, which serves to illustrate further the 
difficulties associated with rejection of meal-based disturbances. 



 
Figure 3: Closed-loop responses to an announced meal of 40 g CHO with the actual meal size of 40 g CHO 
± 25%. TOP: glycemic excursions remain within desired range, thus avoiding hyperglycemia and 
hypoglycemia. BOTTOM: insulin delivery is initially the same in each case; feedback from glucose 
measurements adjusts the following delivery slightly to compensate for the differences in expected and 
actual glycemic excursions. 

 
Figure 4: Closed-loop responses to an announced meal of 40 g CHO with the actual meal timing varied by 
± 15 minutes. TOP: early consumption of the meal causes a minor hypoglycemic event four hours after 
meal time. BOTTOM: insulin delivery is initially the same in each case as a direct consequence of meal 
announcement; feedback from glucose measurements adjusts the following delivery slightly to 
compensate for the differences in expected and actual glycemic excursions. 



 
Figure 5: Closed-loop responses for when the mismatches of meal size and meal time are combined. 
TOP: in some cases minor hyperglycemic excursions and hypoglycemic events occur. BOTTOM: insulin 
delivery remains similar in all cases since the controller tuning is conservative, thus the major insulin 
delivery peak is due to the meal announcement. 
 

 
Figure 6: Maxima and minima of closed-loop responses under uncertainty for meals ranging from 10, 25, 
and 40 g CHO. TOP: the limits of the glucose trajectories show that the maximum meal size permissible in 
order to avoid hyperglycemia and hypoglycemia under these conditions of uncertainty is less than 40 g 
CHO. 



 
 

Figure 7: A simplified fault tree analysis for an artificial pancreatic beta cell with a top event defined as 
hypoglycemia. This analysis shows the causes of hypoglycemia by different components of the artificial 
pancreas. 
 



Regulatory body approval of medical devices 
 
 An artificial pancreas (AP) for the regulation of glycemia is considered a high-risk device 
(class III) by regulatory bodies such as the FDA. As such, a thorough risk analysis and/or fault 
tree analysis (FTA) is required that demonstrates the safety of both the system and its 
subcomponents. In particular, the control algorithm and software that run the system need to 
demonstrate both safety and efficacy to be robust to both system disturbances other 
abnormalities [16, 17, 18]. 
 The use of MPC as a controller of such a device opens the question of controller 
stability, for example, if constrained MPC is implemented or if an output constraint has been 
implemented there can be a situation of unsolvable optimization [19, 20]. As demonstrated on 
a simplified FTA (Figure 7), a top event defined as hypoglycemia can be developed due to 
overdosing of insulin that is the outcome of either software failure or a controller fault. MPC 
with real time optimization can therefore produce an error that can be a trigger for a 
catastrophic event. 
 The FDA has asked researchers conduct clinical trials to submit an Investigative Device 
Exemption (IDE) before clinical trials are carried out; this document should provide the 
necessary information for them to approve the device for clinical studies. As part of the 
requirements the control algorithm needs to be described in a way that will demonstrate its 
stability. This requirement is challenging if an optimization problem is solved in real time. One 
way to fulfill this requirement is to use unconstrained MPC or a PID algorithm, where controller 
output is then clipped in order to produce feasible instructions to the hardware; the control 
action is then no longer optimal. The use of mpMPC thus permits evaluation of controller 
stability and performance prior to any in silico evaluation of the algorithm based on an approve 
test simulator [21] and the IDE submission. 
 

Conclusions 
 
 Development of a linear model from the Jacobian of the plant produced an efficacious 
control law. The use of a disturbance model is of paramount importance in this application, due 
to the large lag time for insulin action. Without such a model, controller performance is 
inadequate under conditions of model uncertainty similar to those likely to be experienced with 
intra-subject variation. 
 Evaluation of controller performance considering hypo- and hyperglycemia showed that 
these conditions could be avoided with meal sizes of up to 35 g CHO, even under the 
conditions of uncertainty expected. In the United States, a 70 kilogram man typically consumes 
over 70 grams of carbohydrate per meal plan. Thus this upper limit on meal size indicates that 
optimal therapy requires some form of patient adherence to the maximum amount of CHO 
consumed at one meal. 
 Offline optimization, although computationally expensive for high-order systems, has 
been shown to be a feasible technique for applying mpMPC to glycemic regulation. Indeed, 
there is an increase in the number of controller regions as the control law becomes more 
aggressive, and as more controller features, such as a reference trajectory, are included. For 
the controllers demonstrated here, the offline computation of the control law took a time of the 
order minutes. 
 Since the glucose-insulin kinetics in subjects with T1DM is known to be time-varying, 
regular updates of the offline optimization would be required to ensure a sufficiently accurate 
model. This would be feasible on a daily basis due to the time required for the offline 



optimization. Future work will include output constraints implemented through mixed integer 
programming, to satisfy hierarchical objectives on avoidance of hypoglycemic events and 
extended periods of hyperglycemia. 
 A distinctive feature of mpMPC is that it provides the necessary ability to ensure 
controller stability to different inputs as required by the FDA and demonstrated on several 
applications in [19] without the need to compromise the controller design to a less 
sophisticated one such as PID or unconstrained MPC. This implementation also provides 
means to analyze the algorithm before implementation, which is critical to satisfying FDA 
requirements concerning risk analysis. 
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Appendices 

 
Appendix A: Graphical example of control law implementation 
 Consider an arbitrary second order linear state space model, with state vector given by 

 , (A1) 
where x1 and x2 represent the model states. The lookup table in this case is a two-dimensional 
polytope, with regions described graphically in Figure A1. The lookup table is searched until 
the region containing the state vector, x, is found. The next control move is calculated using 
the affine function associated with the current region using 
 . (A2) 

 
Figure A1: Graphical representation of the controller regions for a hypothetical controller across two 
states. Associated with each region is an affine function, representing the control law, which is evaluated 
at each time step using the state vector. 


