
A parallel algorithm for large-scale dynamic optimization

Arndt Hartwich, Wolfgang Marquardt1, RWTH Aachen University, Aachen, Germany

Abstract

In nowadays’ market conditions in the chemical industry, multi-product facilities, either multi-purpose batch
processes or continuous processes operated in production campaigns, become more and more common. Hence,
the operation of these processes does not only require optimal stationary but also optimal dynamic modes
of operation. Dynamic optimization is considered a powerful tool to determine optimal control trajectories.
However, the application of this method is bothered by the very high computational times in case of considering
realistic models of complete chemical plants. Therefore, besides continuing algorithmic improvement, parallel
computing strategies have to be exploited. Such parallelization strategies are presented in this contribution.
Three examples of very different problem sizes are discussed. The speedup for the largest example even obtains
a value close to the theoretical limit of the parallelization approach.

1 Introduction

Dynamic optimization can be considered as a powerful tool, where most applications are more or less time-critical.
In particular, the applicability of real-time implementations strongly depends on the computational times until
the solution to the dynamic optimization problem is obtained. Applying the sequential approach, the infinite
dimensional optimization problem is transformed into a finite dimensional optimization problem by means of an
appropriate discretization, where the computation of the corresponding gradients, also termed sensitivities, of the
latter optimization problem results in the largest part of computational times. Thus, the numerical integration of the
combined state and sensitivity equation system represents the largest portion of computational effort. Nowadays’
developments in computer hardware are not directed towards faster CPUs, but towards parallel computers. Hence,
further reductions in computational times can only be accomplished if parallel computing is accounted for. Keeping
and Pantelides (1998) and Zhu and Petzold (1999) have exploited BDF-type numerical integration routines in
order to allow for distributed memory parallelization. Schlegel et al. (2004) have extended the linear-implicit
extrapolation routine LIMEX (Deuflhard and Bornemann, 1994; Deuflhard et al., 1987) in order to allow for the
solution of sensitivity equation systems. The parallel implementation of this sensitivity integration algorithm is
described in this work. Nowak et al. (1998) have developed a parallel algorithm of LIMEX. As however the greatest
part of the arising computational effort is due to the sensitivity equation system, the parallelization as suggested
in this work focuses on the additional computational effort due to the sensitivity equation system similar to the
works of Keeping and Pantelides (1998) and Zhu and Petzold (1999). As the operating system Windows Server
2008 has been chosen.

2 Numerical Solution methods of dynamic optimization

The dynamic optimization involves the determination of the optimization variables, control trajectories u(t) and
final time tf , such that an objective function Φ has to be minimized subject to the model equations and additional
path and endpoint constraints. Mathematically this leads to a non-linear optimal control problem and can be
stated as

min
u(t),tf

Φ = Φ(y(tf ),u(tf )) (CDYNOPT)

s.t. Bẏ = f(y(t),u(t)), t ∈ [t0, tf ], (1a)

0 = y(t0) − y0, (1b)

0 ≥ hy(y(t),u(t)), t ∈ [t0, tf ], (1c)

0 ≥ e(y(tf ),u(tf )), (1d)

1Corresponding author: wolfgang.marquardt@avt.rwth-aachen.de

1



u(t)min ≤ u(t) ≤ u(t)max, t ∈ [t0, tf ]. (1e)

This formulation will be denoted as the continuous dynamic optimization problem (CDYNOPT) in the following.
y(t) ∈ Rny denotes the vector of the state variables, defined on the time horizon t ∈ [t0, tf ]. The differential-
algebraic process model of index one is given by Equation 1a. The time-dependent control variables u(t) ∈ Rnu

are degrees of freedom for the optimization problem minimizing the objective function Φ. The state variables are
constrained by path constraints hy(·) ∈ Rnhy . Endpoint constraints are denoted by e(·) ∈ Rne .

2.1 Numerical solution

Binder et al. (2001) and Srinivasan et al. (2003) have discussed in detail the specific advantages and disadvantages
of alternative strategies for the solution of dynamic optimization problems. The chosen direct method solves the
dynamic optimization problem (CDYNOPT) numerically according to the control vector parameterization approach,
which is also termed the sequential approach. This solution method is well-known for its ability to solve very large-
scale and stiff problems.

2.1.1 Tranformation into NLP

The dynamic optimization problem (CDYNOPT) is transcribed into a non-linear program (NLP) by time-discretizing
the controls u(t) on the time horizon t ∈ [t0, tf ] and using, e.g. piecewise constant or piecewise linear approxi-
mations. The discretization and the formulation of the NLP for the piecewise constant approximation reads as
ui(tk) = cui,k

, k = 1, ..., N, i = 1, ..., nu, where N is the number of discretization intervals and nu the number of con-
trol variables. Choosing the discretized controls and the final time z := [cu1,1

, ..., cunu,N
, tf ], as the nz optimization

variables, the dynamic optimization problem can be transcribed into the NLP

min
z

Φ = ΦM (y (z, tf )) (NLP)

s.t. 0 ≥ hy(y(z)), (2a)

0 ≥ e (y (z)) , (2b)

zmin ≤ z ≤ zmax. (2c)

The approximation and reformulation for piecewise linear intervals is straightforward. The path constraints (1c)
of the continuous formulation (CDYNOPT) are relaxed by a pointwise formulation on the discretized grid. The
NLP is solved by employing a standard SQP algorithm (Gill et al., 1998). The optimization algorithm requires
repetitive function evaluations and gradients.

2.1.2 Numerical methods for the computation of first-order sensitivities

In order to obtain the gradients for the NLP, one can differentiate the DAE system (1a) with respect to each
parameter zi, which yields additional nz sensitivity equation systems of the form

Bṡy
i =

∂f

∂y
sy
i +

∂f

∂zi

, i = 1, ..., nz, (3)

where si = dy

dzi
denotes the sensitivity of y with respect to the parameter zi. The sensitivity systems (3) for each

parameter zi form DAE systems as well, which are independent of each other, but obviously depend on the solution
of the state equations (1a). Since for each degree of freedom zi a sensitivity equation system has to be solved, the
computational cost of this approach is rangely proportional to the number of decision variables nz.

2



2.1.3 Linearly-implicit Euler extrapolation for sensitivity analysis

This section briefly summarizes the linearly-implicit extrapolation algorithm. The reader is referred to the works
of Deuflhard (1983), Deuflhard and Bornemann (1994), Deuflhard et al. (1987) and Ehrig et al. (1996) for more
details on the basic numerical integration routine and to Schlegel et al. (2004) for more details on the extensions
for simultaneous state and sensitivity integration, that computes the vector Y := [yT , sT

1 , ..., sT
nz

].
The key idea of an extrapolation method is a repeated integration over the basic step H for decreasing internal

stepsizes
hj = H/mj, j = 1, . . . , jmax, (4)

where the harmonic sequence {mj} = {1, 2, 3, ...} is utilized. A simplified algorithmic structure is depicted by
Algorithm 1, where the extrapolation tableau is computed according

Tj,k = Tj,k−1 +
Tj,k−1 − Tj−1,k−1

mj/mj−k+1 − 1
, k = 1, . . . , j. (5)

Algorithm 1 Simultaneous state and sensitivity integration (SLIMEX)

Compute Jacobian An = ∂
∂y

(f(yn, z, tn) −Bẏ)
for j = 1, . . . , jmax while convergence criterion not satisfied do

hj = H/mj

LU = An −

B
hj

for k = 0, . . . , j − 1 do

yk+1 = yk − (LU)−1f(yk, z, tk)

Γ =
(

A(yk)si,k + ∂f
∂zi

(yk)
)

si,k+1 = si,k − (LU)−1Γ, i = 1, . . . , nz

end for

Tj,1 = Yj

if j > 1 then

compute Tj,j via (5) and check convergence
end if

end for

Y(H) = Tj,j

As described by Schlegel et al. (2004), a staggered integration by Algorithm 2 has been omitted. Error control
is only applied to the states, but not to the sensitivity equation system. A staggered approach first converges
the states and afterwards computes the sensitivities on a converged sequence of order ĵ and step-sizes H . Hence,
eventually redundant extrapolations of the sensitivity system could be avoided by only integrating the sensitivities
if convergence in the states has been accomplished. However, housekeeping of the LU decompositions, Jacobians
etc. has been considered too much effort for the rather rare occasion of a step-size reduction. For reasons explained
below the staggered approach is parallelized.

It should be noted that the first LU decomposition of each step is computed employing the MA28AD routine,
whereas every subsequent LU decomposition is computed by the MA28BD routine (Duff, 1979), which reuses the
pivot sequence of MA28AD and substantially saves computational times. In some cases, it can be computationally
beneficial if even the first LU decomposition on each step is first attempted using MA28BD and afterwards using
MA28AD, if the first one has failed. This is done for the third example, which will be discussed in Section 4.

3 Parallel dynamic optimization

According to Algorithm 1, the same Jacobian matrix A is required for the state system and for the sensitivity
equation systems. The numerical integration scheme requires one Jacobian matrix per step for a pure state inte-
gration, whereas a sensitivity integration requires significantly more than one Jacobian, as the Jacobian is required
for the construction of the right hand side of the sensitivity equation system. The computation of a Jacobian can

3



Algorithm 2 Staggered state and sensitivity integration (SLIMEX)

Compute Jacobian An = ∂
∂y

(f(yn, z, tn) −Bẏ)
for j = 1, . . . , jmax while convergence criterion not satisfied do

hj = H/mj

LU = An −

B
hj

for k = 0, . . . , j − 1 do

yk+1 = yk − (LU)−1 f(yk, z, tk)
end for

T
y
j,1 = Yj

if j > 1 then

compute T
y
j,j via (5) and check convergence

end if

ĵ = j
end for

y(H) = T
y
j,j

for j = 1, . . . , ĵ do

hj = H/mj

LU = An −

B
hj

for k = 0, . . . , j − 1 do

Γ =
(

A(yk)si,k + ∂f
∂zi

(yk)
)

si,k+1 = si,k − (LU)−1Γ, i = 1, . . . , nz

end for

Ts
j,1 = si,j

if j > 1 then

compute Ts
j,j via (5)

end if

end for

si(H) = Ts
j,j

be very time consuming - depending on the model under consideration. Furthermore, the additional effort required
for sensitivity evaluation when compared to pure state integration comprises nz additional evaluations of the sen-
sitivity residuals and nz additional back substitutions with the already available LU decomposition. The error
control is only applied to the states. It is important to note that the sensitivity equation system i is independent
of the system j 6= i. The implementation is done using the Message Passing Interface (MPI). Windows Server 2008
has been chosen as the operating system.

3.1 Parallelization strategies

For a wide range of case studies also wide ranges of the number of sensitivity equation systems nz and the size
of the DAE model ny have to be accounted for in order to obtain high efficiency for each case study at hand.
It is expected, that increasing computational times will allow for more communication between the processes,
whereas very small examples might even result in no speedup in a parallel setting. In the following, three different
parallelization strategies are discussed, where the extent to which information is communicated, increases. These
three different strategies are expected to cover the wide range of possible case studies.

3.1.1 Distributed sensitivities (DS)

The main idea for parallelization is the distributed computation of sensitivities, since the sensitivity equations are
independent of each other and only dependent on the state system. All processes are assigned an equal number of
sensitivity equation systems. This approach is very simple and requires communication only once per sensitivity
integration, i.e. after each integration sensitivity information of each process is broadcasted to all other processes
such that each process contains the complete sensitivity information. The processes will be denoted as distributed

4



sensitivity integrators (DSI) in the following. All processes have to perform the state integration, the computation
of the Jacobians and the LU decomposition.

3.1.2 Distributed sensitivities with centralized Jacobian (CJ)

The fundamental idea of this approach is to decouple the state integration and the sensitivity integration. The
state integration requires one Jacobian per integration step H , i.e. An, whereas the sensitivity integration requires
additional evaluations of the Jacobian A(yk) for each iteration k = 1, . . . , j − 1 on the extrapolation tableau.
However, the states yk, from which the Jacobians can be computed, are independent of the sensitivity system
and can be obtained by a pure state integration. Hence, a preceding state integration can deliver the states
yk and the Jacobians A(yk) can be computed by separate processes. Processes which integrate the sensitivity
equations follow the state integration with a small time delay and receive the Jacobians from separate processes that
compute the Jacobians. Thus, the computational burden to obtain Jacobian matrices for the sensitivity integration
can be reduced to the communication overhead. However, additional processes that compute the Jacobians and
communicates the entire information, respectively, are required. One of the drawbacks of this approach is the very
high frequency of communication, which has to take place after each step of the integrator. This strategy, which
has been suggested similarly by Keeping and Pantelides (1998), will require four different types of processes:

• Communicator (CO): This process communicates the entire information.

• State integrator (STI): This process carries out the sole state integration and communicates the states y, etc.
to the communicator.

• Jacobian calculator (JC): This process receives the state vectors y from the Communicator (CO) and returns
the computed Jacobians A(y).

• Sensitivity integrator (SEI): Analogously to the distributed sensitivities strategy this process performs a
sensitivity integration of a subset of sensitivities and additionally receives the required Jacobians from (CO).
In contrast to the distributed sensitivities strategy, the states are not included in the numerical integration,
but are communicated to the SEI to allow for the computation of the LU decomposition. As in the original
algorithm error control on the sensitivities has been omitted, the order j and the step-size H are sent to the
sensitivity integrator from the state integrator via the communicator.

The staggered approach is parallelized and the entire communication of information has to account for the fact,
that states yk, that are computed, have to be omitted, if a step size reduction has to be performed. The staggered
approach has been considered too much effort for the serial code since step size reductions are rather rare and
housekeeping of LU decompositions and Jacobians, etc. has been considered too much effort. However, the parallel
code has to store the LU decompositions and Jacobians anyway and therefore the latter argument is not valid for
the parallelization. Hence, the staggered approach is parallelized as it saves eventually redundant basic steps on
the sensitivity equations.

3.1.3 Distributed sensitivities with centralized Jacobian and communicated LU decomposition
(CJLU)

This approach follows the idea of (CJ), but the LU decompositions, which are computed by the state integrator, are
additionally communicated to the sensitivity integrators via the communicator. The size of the LU decomposition
is significantly larger compared to the size of the Jacobians. Hence, the communication overhead will increase
significantly compared to (CJ). Furthermore, the efficient implementation of LIMEX, which reuses the same pivot
sequence over one step, can result in higher computational times for (CJLU) compared to (CJ). MA28AD is
employed only once to compute the LU decomposition on one step. All subsequent computations of the LU
decompositions are computed by calls to MA28BD, which substantially saves computational effort. Therefore, the
overhead due to communication might be equal to the potential savings.

5



3.2 Load balancing

In order to obtain the optimal degree of speedup, the appropriate numbers of CPUs assigned to each task has to
be determined. The state integrator has to be sufficiently fast to allow for computation of the Jacobians in time,
when the sensitivity integrators require the Jacobians. The theoretical limit of the reduction in computational time
is the pure state integration, which follows from Amdahls law. Hence, there exists an upper limit for the total
number of CPUs for the chosen approach of parallelization. Nowak et al. (1998) presented a parallel version of the
LIMEX state integrator. Merging both approaches would result in a lower theoretical limit.

3.3 Memory issues

During one of the case studies, which will be described in more detail in Section 4, the required memory space for
sensitivity integration exceeded the allowed limit of 3GB for 32Bit software on Windows. Due to the fact that parts
of the code is commercial and at that point in time not available in 64Bit, the sensitivity integration had to be
split into several sequential sensitivity integrations, where each integration computes a part of the entire sensitivity
information. Hence, the parallelization using MPI greatly contributes to the efficiency of the software, since all
sensitivities can be computed by one parallel sensitivity integration, as the sensitivity load is distributed on several
processes, each of which can address up to 3GB. The assessed numerical example features a rather small number
of sensitivities, which can be computed by one serial sensitivity integration in order to allow for a comparison of
the serial code to the parallel one. However, for the real case study the speedup is not only larger due to the higher
overall load of sensitivities and a longer time horizon, the real speedup is even higher, since the serial code would
have to compute the sensitivities by repeated sensitivity integrations on a reduced load.

4 Numerical Experiments

In this section the algorithmic performance is investigated by means of three case studies. The efficiency

Θ =
Ψ

np

(6)

is of interest not only for very large-scale models, but also when considering small-scale problems. np denotes the
number of CPUs and Ψ speedup

Ψ =
ts
tp

, (7)

where ts denotes the serial computational time and tp the parallel one. The examples are chosen over a wide
range of applications. The chosen approach for parallel computing is targeted at large problems, where the model
consists of many equations and many sensitivities have to be computed. The numerical experiments have been
conducted on Xeon 2.66 GHz double quad core machines employing 16 GByte of random access memory running
on Windows Server 2008. Since only 8 CPUs on one node have been available and the network between the nodes
has not been considered to be sufficiently fast, the numerical experiments have not yet assessed the parallelization
beyond 8 CPUs.

4.1 Case studies

4.1.1 Example 1: Polymerization process (236 DAEs)

The controls are discretized by 68 parameters. The model is considered very small, which is suggested by the very
low computational times for one single sensitivity integration. The applied strategy, computational times required
for one sensitivity integration, speedup and efficiency are depicted in Table 1. For strategies (CJ) and (CJLU)
also the number of CPUs per task are given. Since strategy (DS) only employs one type of process, all CPUs are
used as distributed sensitivity integrators. The number in brackets shows the computational time for one single
state integration. This number represents the theoretical limit for the parallelization. Only strategy (DS) has

6



been successfully applied to this example, since the other approaches have resulted in higher computational times
compared to the serial code because of large overhead. Even though this example is very small and features only
a small number of sensitivities, a speedup in the range of two has still been achieved.

Strat. CO STI JC SEI #CPU Time [sec] Ψ Θ
serial 0 0 0 0 1 2.54(0.5)
DS 0 0 0 0 2 1.67 1.52 0.84
DS 0 0 0 0 3 1.44 1.76 0.48
DS 0 0 0 0 4 1.51 1.68 0.38
DS 0 0 0 0 5 1.34 1.90 0.27
DS 0 0 0 0 6 1.31 1.94 0.28
DS 0 0 0 0 7 1.29 1.97 0.18
DS 0 0 0 0 8 1.26 2.02 0.16

Table 1: Example 1: Strategy, number of processors and computational times

4.1.2 Example 2: Polymerization process (2104 DAEs)

The controls are discretized by 197 parameters. For this example, strategy (CJ) turns out to be the fastest strategy
(Tab. 2), whereas DS gives slightly worse results and CJLU is significantly worse compared to the other approaches.
In total, a speedup of around 3 is obtained. Only one JC is considered sufficient, since the major computational
effort is required for the computation of the sensitivities. Strategy DS does not even show major improvements in
the total computational time if the number of employed CPUs is increased beyond six.

Strat. CO STI JC SEI #CPU Time [sec] Ψ Θ
serial 0 0 0 0 1 33.27(2.3)
DS 0 0 0 0 2 17.68 1.88 0.94
DS 0 0 0 0 3 13.04 2.55 0.85
DS 0 0 0 0 4 12.97 2.57 0.64
DS 0 0 0 0 5 12.01 2.77 0.55
DS 0 0 0 0 6 11.57 2.88 0.48
DS 0 0 0 0 7 11.34 2.93 0.42
DS 0 0 0 0 8 11.28 2.95 0.37
CJ 1 1 1 1 4 29.19 1.14 0.28
CJ 1 1 1 2 5 15.73 2.12 0.42
CJ 1 1 1 3 6 12.53 2.66 0.44
CJ 1 1 1 4 7 11.4 2.92 0.42
CJ 1 1 1 5 8 10.74 3.10 0.39
CJLU 1 1 1 1 4 33.29 1.00 0.25
CJLU 1 1 1 2 5 20.98 1.59 0.32
CJLU 1 1 1 3 6 18.83 1.77 0.29
CJLU 1 1 1 4 7 17.95 1.85 0.26
CJLU 1 1 1 5 8 17.55 1.90 0.24

Table 2: Example 2: Strategy, number of processors and computational times

7



4.1.3 Example 3: Large-scale intermediate chemicals process (13956 DAEs)

The controls are discretized by 75 parameters. This example is considered the most important example for the
studied parallelization strategies. One of the most interesting aspects of this case study is, that all physical
properties are evaluated by external functions, i.e. so-called physical property packages. Hence, they have a strong
impact on the computational time for the Jacobians, whereas however they result in a rather small Jacobian,
since the corresponding equations are solved within the property packages and do not show up in the model.
These physical properties require many floating point operations, whereas the corresponding LU decomposition is
computed comparably fast, since the LU decomposition is only dependent on the size and structure of the Jacobian.

Considering the discussion in Section 3.3 the speedup would be larger for a higher number of parameters.
However in this case, the serial performance could not be determined due to memory issues. Since several sequential
sensitivity integrations with a reduced load would have to be performed, the real speedup of the parallel code is
significantly larger, such that even the efficiency Θ can exceed 100%.

In contrast to the other examples, the parallelization performance almost reaches its theoretical limit, which is
the state integration without sensitivities. Strategy CJ with 4 CPUs assigned to JC (489 sec) almost reaches the
limit (435 sec). The communication overhead that occurred for this example is comparably small, since the general
computational times are large enough. Furthermore, the frequency of communication decreases.

Strat. CO STI JC SEI #CPU Time [sec] Ψ Θ
serial 0 0 0 0 1 2080 (435)
DS 0 0 0 0 2 1997 1.04 0.52
DS 0 0 0 0 3 1914 1.09 0.36
DS 0 0 0 0 4 1866 1.11 0.28
DS 0 0 0 0 5 1832 1.14 0.23
DS 0 0 0 0 6 1755 1.19 0.20
DS 0 0 0 0 7 1738 1.20 0.17
DS 0 0 0 0 8 1701 1.22 0.15
CJ 1 1 1 1 4 1375 1.51 0.38
CJ 1 1 2 2 6 698 2.98 0.50
CJ 1 1 3 3 8 543 3.83 0.48
CJ 1 1 2 4 8 735 2.83 0.35
CJ 1 1 4 2 8 489 4.25 0.53
CJLU 1 1 3 3 8 611 3.40 0.43
CJLU 1 1 2 2 8 776 2.68 0.34
CJLU 1 1 1 1 8 1434.58 1.45 0.18
CJLU 1 1 2 4 8 838.54 2.48 0.31
CJLU 1 1 4 2 8 593.65 3.50 0.44

Table 3: Example 3: Strategy, number of processors and computational times

4.2 Discussion of results

The above examples show that the chosen approaches work very well for large-scale problems and still quite efficient
for small and medium-scale problems. Strategy (CJ) performs best for the larger two examples and (DS) for the
smallest one, which was expected to a certain extent. The difference between (CJ) and (CJLU) is rather small
for the largest example. However, for this example (CJ) works better, since the LU decomposition is rather small
compared to the computational effort for each Jacobian.

8



5 Conclusion

In this paper, the parallelization of the combined state and sensitivity integration of a dynamic optimization ap-
proach has been suggested. The one-step extrapolation code of Schlegel et al. (2004), that requires by far the
largest computational effort in the chosen method of the sequential approach, has been parallelized by means of an
exploitation of the algorithmic structure. Three numerical examples were examined, which assess the three imple-
mented approaches to parallelize the algorithms. The simple distributed computation of the sensitivities turns out
to be the best approach for very small examples, whereas the additional centralized computation of the Jacobians
gives considerable extra speedup, even though the overhead increases significantly. For the largest example, the
theoretical limit has almost been reached. The additional communication of the LU decomposition turns out to be
not efficient for the chosen examples, since the communication overhead of the enormous amount of data is larger
than the computational times for the LU decomposition at all. For future work, different implementations for the
computation of the LU decomposition will be assessed, but also different possibilities of the parallelization of the
LU decomposition. Furthermore, OpenMP can be employed in order to speed up each process of the illustrated
algorithm. Since only nodes with 8 CPUs have been employed, the usage of OpenMP has been omitted for this
work, since already 4 tasks are required to be divided onto the available CPUs.

References

Binder, T., L. Blank, H. G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder, W. Marquardt, J. P. Schlöder
and O. von Stryk (2001). Introduction to model based optimization of chemical processes on moving horizons.
In: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke and J. Rambau, Eds.). Springer-
Verlag Berlin Heidelberg. pp. 297–339.

Deuflhard, P. (1983). Order and stepsize control in extrapolation methods. Numerische Mathematik (41), 399–422.
Deuflhard, P. and F. Bornemann (1994). Numerische Mathematik II. De Gruyter. Berlin.
Deuflhard, P., E. Hairer and J. Zugck (1987). One-step and extrapolation methods for differential-algebraic systems.

Numerische Mathematik (51), 501–516.
Duff, I.S. (1979). Ma28 - a set of fortran subroutines for sparse unsymmetric linear equations. Technical Report

AERE-R8730. AERE Harwell.
Ehrig, R., U. Nowak and P. Deuflhard (1996). Highly scalable parallel linearly-implicit extrapolation algorithms.

Technical Report TR 96–11. Konrad-Zuse-Zentrum für Informationstechnik. Berlin.
Gill, P.E., W. Murray and M.A. Saunders (1998). SNOPT: An SQP algorithm for large-scale constrained optimiza-

tion. Technical report. Stanford University. Stanford, USA.
Keeping, B.R. and C.C. Pantelides (1998). A distributed memory parallel algorithm for the efficient computation

of sensitivities of differential-algebraic systems. Math. comp. Sim. 44, 545–558.
Nowak, U., R. Ehrig and L. Overdieck (1998). Parallel extrapolation methods and their application in chemical

engineering. High-Performance computing and networking lecture notes in computer science 1401, 419–428.
Schlegel, M., W. Marquardt, R. Ehrig and U. Nowak (2004). Sensitivity analysis of linearly-implicit differential-

algebraic systems by one-step extrapolation. Appl. Num. Math. 48, 83–102.
Srinivasan, B., S. Palanki and D. Bonvin (2003). Dynamic optimization of batch processes I. Characterization of

the nominal solution. Comp. Chem. Eng. 27, 1–26.
Zhu, W.J. and L. Petzold (1999). Parallel sensitivity analysis for daes with many parameters. Concurrency-practice

and experience 11, 571–585.

9


