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Abstract - Gas-solid riser flow exhibits strong heterogeneous structure in both axial direction 
and radial directions. Recent experimental studies reveal that the general radial solids 
concentration profiles present a double ring structure and the formation of a solid core region 
which have a relative higher concentration than the annulus region.  This paper is focused on a 
comprehensive modeling of continuous gas-solids flow structure both in radial and axial 
directions.  The specific transport mechanism due to collisional diffusive mass transfer and 
turbulent mass transfer are modeled. The radial heterogeneous flow structure of solids and gas 
at the different stage of the riser are investigated in detail. This mechanistic model, implemented 
with a detailed axial flow structure model, consists of a set of coupled ordinary-differential 
equations developed from conservation laws of mass, momentum and kinetic energy of both gas 
and solids phases.  The solving algorithm is based on the Runge-Kutta method.  The proposed 
model predicts the phase transport profiles such as the solids concentration, phase velocities and 
pressure drops in different regions along the riser. The model also yields the critical information 
of flow structure characteristics such as back flow, wall frictions and choking. 

INTRODUCTION 
Recent measurement of circulating fluidized bed riser with Electrical Capacitance Tomography (ECT) 
reveals a double ring structure of solids concentration and a solids core region flow structure in radial 
direction (Du et al. (2004)). This double ring structure appears to be stable along the riser, and could be 
observed under a wide range of CFB operation conditions.  
Most models on heterogeneous flow structure are based on the core-annulus (wall) flows (Bolton and 
Davidson, (1988); Rhodes and Geldart, (1987); Horio et al, (1988); Senior and Brereton, (1992)), which 
typically consider a dilute uniform core flow, and a dense wall flow along the riser. Most of these models 
ignore the detailed mechanisms in the bottom region of riser where the flows can be very dense and complex. 
A primitive model was lately proposed to interpret the reported core-annulus-wall structure (Zhu et al., 
(2005)), using a simplified kinetic theory model to account for the solids acceleration in collision dominated 
dense flow regimes near the bottom of riser. It is realized, however, that most traditional momentum-based 
models with the assistance of kinetic theory modeling approach may be insufficient to describe some basic 
physics of collision-induced energy dissipation in fluidization, such as energy dissipations from tangential 
slip and rotational slip. This deficiency may be represented by the inability of correctly predicting the 
pressure distribution in the dense flow regime near the bottom of a CFB riser. The importance of correct 
account of energy transport and dissipation in the momentum equation may be analogous to that of k-ε 
model in the turbulent momentum transport equations in turbulence flows. Hence an additional term due to 
energy dissipation should be introduced in solid momentum transport equation in the collision and 
acceleration dominated regime (Zhu and You, (2006)).  
A 3-zone model is recently presented to simulate the heterogeneous structure of the riser flow (Zhu et al. 
(2007)). The model yields a reasonable explanation not only for “core-annulus (wall)” flow structure but also 
the “core-annulus-wall” flow structure in riser flows. While, the model artificially divides the riser into 3 
different zones and uses averaged values to describe the characteristics of the flow in each zone, thus it can 
not reveal the intrinsic mechanism and relationship of solids mass transport of each place. To make the 
problem to be closed, the model uses the pre-defined wall zone conditions to simulate the structure in core 
and annulus zones.  
This paper is aimed to present a continuous modeling approach with intrinsic mass transfer mechanism to 
characterize the formation mechanisms of heterogeneous structure in a CFB riser. 
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GENERAL GOVERNING EQUATIONS 
Basically, the flow in a riser could be described with following governing equations based on the mass and 
momentum conservation of each phase.  
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With the volumetric fraction relations of gas and solids phase and the equation of state of gas phase: 
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Where, FD is the drag force which is given by Richard-Zaki equation (Richardson and Zaki (1954)), 
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FC is the solid momentum transport due to energy dissipation in the dense and acceleration region (Zhu and 
You (2006)) which is 
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Where, Γ represents the energy dissipations due to inter-phase frictional and inter-particle collision. 
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wτ  and  swτ  are  respectively the friction stresses between the wall and the gas phase and the solids phase. 

For radically uniform flow, the integrals in above equation could be replaced by an averaged value; the 
closure of the problem for axially heterogeneous flow structure 
is fulfilled  
For the heterogeneous flow structure in both radial and axial 
directions, we assume that the transport parameters φ  could be 
expressed as polynomials with following form: 
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We use 3rd order polynomials to approximate the distribution,  
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Here, φ  could be αs(r,z), Us(r,z) or Ug(r,z).  

It is noted that the pressure distribution at an arbitrary cross-
section is uniform. That means the gas density is constant at a 
cross-section. 
The coefficients of CΦi could be given by Figure 1. Representative flow structure 

by term of 3rd order polynomials 



0 0 ( )c zφ φ=  is the value of  ( , )r zφ  at the center line; 

1 0cφ = from axi-symmetricity of the riser; 
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Where, ( )w zφ  is the value of  ( , )r zφ  at the wall, and ( )w zφδ  is the radial gradient of ( , )r zφ  at the wall. 

Where, ( )w zφ  is the value of  ( , )r zφ  at the wall, and ( )w zφδ  is the radial gradient of ( , )r zφ  at the wall. 

Put the polynomials of solids concentration, solids velocity and gas velocity with above form into governing 
equation (1)-(4), and with the truth that the pressure across any cross-section of the riser is uniform, we could 
have 
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Where Ci,j are coefficients explicitly expressed by terms of αs0, αsw, δαsw, Ug0, Ugw, δugw, Us0, Usw and δusw. 
(see appendix A) 
we have ten unknowns (αs0, αsw, δαsw, Us0, Usw, δusw, Ug0, Ugw, δgw, P), and we have only 4 governing 
equations ((8)-(11)). These 4 governing equations describe the axial heterogeneous flow structure along the 
riser and could only be used to represent the change of averaged flow structure parameters , ,s g sU Uα . 

To closure the problem of heterogeneous flow structure (in both radial and axial directions), 6 additional 
intrinsic correlations (in radial direction) are needed. These 6 correlations will quantify the radial transport of 
phases in terms of 0 ( ), ( ), ( )w wz z zφφ φ δ , which link the transport properties of centerline to those at the wall 
and shall cover the flow structure of concentrations and velocities of both gas and solids phases across any 
cross-section of the riser. They shall reveal the radial mass transport caused by the turbulence and collisional 
diffusion as well as the effect of wall boundary constraint on the flow structure. 

INTRINSIC MECHANISM AND PROBLEM CLOSURE 
Based on the non-slip condition of gas phase at the wall boundary, the gas velocity at the wall shall be zero. 
We have ( ) 0gwU z = .We also assume that the friction between the gas phase and the wall is small enough 
and could be neglected, thus the radial change rate of gas velocity at the wall could be assumed to be zero. 



We could write ( ) 0Ugw zδ = . The above two equations along with the averaged gas velocity given by the 
previous governing equation could give the gas velocity distribution across the cross-section of riser which is 
characterized with three characteristic values 0 ( )gU z , ( )gwU z , ( )ugw zδ . 

For the solids volume fraction, we could also assume it is packed on the wall and thus is the constant value, 
which gives 
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Based on the force balance of solids phase at the wall, we could have 
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Where, FDw is the drag force of gas phase on the solids phase at the wall. 
The formation mechanism of radial heterogeneous flow structure is the radial solids transport due to the 
turbulent mass transfer and collisional diffusive mass transfer of solids particles. The intensity of turbulent 
mass transfer is dependent on the local turbulent intensity and the velocity gradient of solids and is from high 
velocity to low velocity. The intensity of mass transfer is dependent on the local solids concentration and the 
concentration gradient of solids phase, the direction is from high concentration to low concentration. The net 
value of these two mass transfers gives the local solids transport. . . . .net T C C DJ J J= +  

Based on the mass conservation of solids phase, the total mass flow of solids phase across the cross-section 
shall keep unchanged although the solids may transfer inwards or outwards locally, and we could write: 
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Where, For the simplicity of the problem, we assume the coefficients of turbulent convective and collisional 
diffusive mass transfers are respectively proportional to the local velocity and solids concentration. 
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The radial transport of solids also causes the radial solids momentum shift, which is balanced by the radial 
stress of the wall boundary and represented as the form of solids pressue. We assume that the solids pressure 
is equal to the gravity of the solids phase at each height. 

net s swJ U dA σ=∫          (12) 

With above equations of intrinsic mechanism and simplifications, we could obtain 7 independent equations 
( equation group A and 10-12) for 7 variables  (αs0, δαsw, Us0, Usw, δusw, Ug0, P) to describe the 
heterogeneous flow structure in a riser. They are given as: 
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Where Di,j are coefficients explicitly expressed by terms of αs0, δαsw, Ug0, Us0, Usw and δusw. (see appendix B). 



The closure of the problem is obtained. 

EXPECTED RESULTS AND DISCUSSIONS 
To preliminarily evaluate the correctness of our model, some 
analysis and discussion are made. We assume that at the inlet 
of the riser, the solids concentration and solids velocity are 
slightly non-uniform across the cross-section as shown in 
figure 2(a). The directions of the solids mass transfers due to 
turbulence and collisional diffusion are also shown. Figure 2(b) 
shows the net mass transport of solids phase. The solids 
always transport outwards from the inner of the riser across the 
cross-section, which could make the flow structure more non-
uniform. As the transport amount in the middle part of the riser 
is higher than that in the center part, the middle part shall 
become dilute much faster than the center part.  
After the process of solids acceleration, the solids velocities in 
the middle and center regions increase while the velocity at the 
wall boundary shall decrease due to the wall fraction. The non-
uniformity of the radial flow structure becomes higher (figure 
3(a)). Now, the direction of net mass transport would be from 
the outer side into the inner side of the riser (figure 3(b)).  

With further radial mass transport of solids and development of 
flow structure, the solids velocity and concentration 
distributions change further as shown in figure 4(a). The solids 
concentrations of core and annulus zone are very dilute, while 
the concentration in the core zone is still higher than that of 
annulus zone.  Due to the friction of the wall, the solids 
velocity at the wall boundary decreases further and becomes to 
move downwards. Now, the solids transport radially from inner 
side to outer side of the riser. 

CONCLUSIONS 
This paper presents a complete mechanistic model to interpret 
the heterogeneous flow structure in riser flows.  The governing 
equations of mass and momentum conservation of gas and 
solids phases are given to describe the axial flow structure. The 
intrinsic mechanism of radial mass transport is presented to 
reveal the formation process of the radial heterogeneous flow 
structure. The proposed mechanism yields a reasonable 
explanation for the heterogeneous riser flow structure in both 
radial and axial directions. Typical radial distributions of solids 
velocity and concentration at different stage of riser flow are 
described and analyzed. More quantitative comparison and 
investigation of parametric study could be conducted in future 
studies. 
 
 
 
 
 
 
 
 

αs,US

r 

0Z 

0 
(a) solids concentration and velocity 
distribution at riser inlet 

JC.D. 

JT.C. 

0 

αs,US 

r 
(a) solids concentration and velocity 
distribution at middle of riser height 

0Z 
JT.C. JC.D. 

r 0 

αs,US 

0Z

(a) solids concentration and velocity 
distribution at middle of riser height 

JC.D. 

JT.C. 



α 
g gas volume fraction 

Ug gas velocity, m/s 
A area, m2 

z riser height, m 
ρg gas density, kg/m3 
α 

s solids volume fraction 
Us solids velocity, m/s 
ρs solids density, kg/m3 
FD drag force, N/m3 

g gravity constant, m/s2 
Hb height of the bottom zone, m 
j exponent defined by eq. 2, - 
k  exponent defined by eq. 2, - 
r radial position, m 

p pressure, Pa 
L length, m 
µm 
pref reference pressure at cyclone exit, Pa 
 overall riser pressure drop, Pa 
R diameter of the riser, m 
t time, s 
u superficial gas velocity, m/s 
U signal of fiber-optical probes, V 
U0 signal of fiber-optical probes for cv = 0, V 
ε voidage, - 
ε  cross-sectional average voidage, - 
P Pressure, Pa 
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