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1. Introduction 

 

Turbulent drag reduction by polymer additives is still used in energy and cost saving 

applications, especially in oil-pipelines.  From a theoretical perspective, it is an important 

problem as it deals with turbulence and rheology.  An in-depth understanding of this 

phenomenon can provide useful insights into the physics of turbulent flows.  Since its discovery 

in 1940s, [1-3], several experimental studies, [4-7], were done to probe into the physical 

mechanism behind polymer-induced turbulent drag reduction.  Of many theories that resulted 

from previous experimental investigations, viscoelastic modification of turbulence was able to 

explain most of the experimental observations.   However, experimentally it is very difficult to 

explore the small scale turbulent structures.  These turbulence scales are associated with higher 

velocity gradients which play a major role in determining the polymer conformation within the 

flow.  With the advent of direct numerical simulation (DNS) of viscoelastic turbulent flows, it 

became possible to get a detailed evaluation of the structural and statistical features of the flow, 

[8-10]. 

 

Recent DNS work has been targeted on better understanding of the viscoelastic 

modification of turbulence [11-14].  Using Karhunen-Loeve (K-L) analysis of Newtonian and 

viscoelastic (FENE-P) channel flows at the same friction Reynolds number, Housiadas et. al. 

[13] showed that viscoelasticity enhances the energy stored in the larger scales of the flow.  

Consequently, viscoelasticity was found to suppress the smaller scales of turbulence.  The 

enhancement of larger flow structures was also evident from flow visualizations.  Handler et. al., 

[15] performed K-L analysis of viscoelastic turbulent channel flows DNS modeled by the 

Giesekus constitutive equation, and confirmed the findings of Housiadas et. al., [13].  Although, 

some work has been done in the field of Newtonian turbulence to study the time-dependence of 

large scale structures using K-L analysis [16-17], such an attempt remains elusive in viscoelastic 

turbulence.  With this motivation and based on our previous works with K-L analysis, we 

undertook the study of time-dependent characteristics of the larger scales (coherent structures) in 

a viscoelastic turbulent channel flow using K-L analysis [18]. 

 

In short, K-L analysis provides a way to create an optimal set of orthogonal velocity 

eigenfunctions based on a set of independent velocity realizations [19].   The eigenfunctions are 

optimal in that they capture as much as possible the fluctuating kinetic energy into as few as 

possible eigenfunctions.  Keeping this in mind, we wanted to use K-L eigenfunctions as the basis 

of a data reduction procedure.  Hence, we embedded in our previous DNS code an extra feature 

to calculate projections of time-varying velocity fields generated by DNS on to a selected set of 

K-L velocity eigenfunctions.  The selection criterion was based on how much fluctuating kinetic 



energy of the flow a particular set of eigenfunctions is able to capture on an average and the cut-

off was typically more than 90%. We applied this procedure in [18] to both a Newtonian and a 

viscoelastic case at the same friction Reynolds number and presented a comparison of the time 

dependent behavior of the coherent structures in these two cases.  Specifically, we came up with 

a projection methodology and provided a preliminary analysis of the time-series of coefficients 

resulting from this projection.  However, the impact of discarding the smaller flow scales on the 

turbulent statistics was not addressed in that work.  In this work, we offer to address these 

important issues.   

 

In particular, the polymer-chains conformation statistics is of prime importance to drag-

reducing flows.  Previous studies, [6-10], have shown that the deformation of polymer chains is 

associated with the modification of turbulence connected with drag reduction.  More specifically, 

past investigations [8, 10, 14] led to an evaluation of statistics of the conformation (end-to-end 

distance of a polymer chain) tensor invariants that provided insights into the deformation 

behavior of polymer chains in the turbulent flow field. Hence, it is of importance to get the same 

statistics from the truncated (in the K-L domain) velocity information of the turbulent flow field 

and compare it against that calculated from the full DNS data. 

 

2. Methods 

 

2.1 Governing Equations and Simulation Conditions 

 

All simulations were carried out for channel flows of a viscoelastic fluid.  The 

viscoelastic fluid was modeled using Giesekus constitutive equation.  The channel size 

was 9 2 4.5x y zL L L× × = × × .  The mesh resolution used was 96 96 96x y zN N N× × = × × .  A 

triple spectral approximation was used for every dependent variable that involved xN Fourier 

modes along the streamwise periodic direction, zN Fourier modes in the spanwise periodic 

direction, and 1yN + Chebyshev orthogonal polynomials along the shear direction.  The drag 

reducing turbulent channel flow was simulated with, zero shear-rate friction Reynolds 

number 0Re 180τ = , zero shear-rate friction Weissenberg number 0 50Weτ = , and with the 

Giesekus model parameters, molecular extensible parameter 1
900

α =  and the ratio of the 

solvent viscosity to the mean total zero shear-rate viscosity at the wall 0 0.9β = , (corresponding 

to the limiting Trouton ratio at infinite extensional rate of 60T = ), with a time step of the 

numerical integration 45 10t −∆ = × .  These parameter values correspond to a drag reduction (DR 

as defined by equation 40 in [12]) of 37.4% [12].    

 

The governing equations in dimensionless form are given as, 
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Here, v
+
is the velocity vector, pp

+  represents the periodic component of the pressure; the non-

periodic component being a linearly increasing one, driving the flow, giving rise to the separately 

mentioned ( )01 xRe eτ  gradient term, with xe  representing the unit vector along the streamwise 

direction. c
+
 is the conformation tensor, and 0D

+ is the numerical diffusivity used to control the 

otherwise unbounded growth of the magnitudes of the resolved highest frequency modes in a 

hyperbolic-type conformation equation.  In our DNS runs, periodicity is assumed along the 

average flow (streamwise) and the neutral (spanwise) directions, x , and z  respectively, whereas 

no slip and no penetration boundary conditions are assumed for the velocity along the solid 

walls, perpendicular to the shearwise, y, direction. 

 

2.2 K-L Analysis 

 

A detailed description of the K-L decomposition method can be found in [15, 19].  Very 

briefly, the K-L procedure allows one to extract an optimal basis set of modes (ψ ) from a given 

database of stationary velocity realizations (here collected via DNS).  The optimality is obtained 

by maximizing 
2

( , )v ψ< >  (an average of the squares of the absolute value of the velocity 

projections) under the normalization constraint, ( ), 1ψ ψ = .  Here, the notation ( ),⋅ ⋅  defines an 
inner-product.  This results in the following eigenvalue problem, 

 

L ψ λψ⋅ =  ,                                        (5) 

 

where, L  is a suitable symmetric, positive definite linear operator, given in matrix form, related 

to the covariance matrix ( )
†
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realizations on which the K-L modes are calculated.  The solution to this eigenvalue problem 

possess a full set of orthogonal eigenfunctions (K-L eigenmodes or K-L modes) 1 2, ,...ψ ψ  

corresponding to a set of positive eigenvalues, 1 2, ,...λ λ  that can be conveniently arranged in 

order of decreasing magnitude 1 2 ... 0λ λ≥ ≥ ≥ .   

 

Physically, the eigenvalues represent the average contribution of the corresponding K-L 

eigenmode to the fluctuating kinetic energy represented by the original set of velocity 

realizations ( ) , 1,2,..,
n
n Nu = .  This allows for a consistently better representation (uniformly 

convergent in the kinetic energy measure), when we project the velocities into a selected subset 



of the K-L modes, 
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 with the superscripts j, l denoting the Fourier indices in the periodic x, z 

directions respectively and the subscript k’ denoting the k’th nodal location on the y-axis.  A 

selective number of the eigenmodes is then used subsequently in order to obtain a projection of 

the Fourier transformed velocity realizations as 
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where ( )jlqa t  are the (complex in general) K-L coefficients and q is the quantum number index 

indicating the order of the eigenvalue used in the partial (for that particular Fourier mode) K-L 

eigenvalue analysis. 

 

Details of the implementation of K-L viscoelastic analysis can be found in the online 

supplemental material provided with [15].  The K-L coefficients thus obtained and the stored 

selected subset of K-L eigenmodes were then used in a post-processing step as per equation (6) 

to reconstruct the velocity field systematically over time.  These velocity realizations at different 

times were then subsequently used to integrate the constitutive equation in order to see if it is 

possible to get the conformation tensor from the K-L velocity data.  The Poiseuille-type K-L 

mode was accounted for in the reconstruction of velocity realizations.  We have varied the 

number of K-L coefficients (correspondingly the number of K-L modes) by setting cut-offs on 

the minimum eigenvalue of any K-L mode to be selected to reconstruct back the velocity fields 

so that the effect of this variation can be studied.  Statistically independent realizations of the 

reconstructed velocity and conformation fields were stored for the subsequent calculation of 

statistics. 

 

3. Results and Discussion 

 

3.1. Influence of K-L data reduction on velocity statistics                 

 



 
(a) 

 

 
(b) 

Fig. 1: (a) Root mean square velocity component fluctuations as a function of y+ .  (b) Reynolds 

shear stress ( xy -component) as a function of y+ .  Solid lines represent results from viscoelastic 

( 0 50Weτ = ) DNS, dashed lines represent corresponding results from K-L reconstruction using 

832 modes, and dash-dotted lines represent results from Newtonian DNS. 

 

Figure 1 shows comparisons between the velocity statistics obtained from a full DNS and 

a K-L reconstructed case.  From figure 1(a), we can see that the r.m.s. values of the velocity 

fluctuations corresponding to the viscoelastic K-L reconstructed case with 832 K-L modes 

(subject to the selection criterion 310λ −> ) are in good agreement with the corresponding DNS 

r.m.s. values for all the components.   In particular, there is no difference in the r.m.s. values of 

streamwise velocity fluctuations between these two cases until the peak value is attained, after 



which the r.m.s. values for the K-L reconstructed case fall slightly (with a maximum fall of 

around 15%) before again meeting the DNS values near the channel center.  As shown in figure 

1(b), the Reynolds stress values corresponding to the K-L reconstructed data are close to their 

corresponding DNS values near the wall, with differences occurring from the peak onwards 

towards the channel center (with a maximum reduction of about 15%). Therefore, quite clearly 

the K-L reconstruction using just 832 high energy K-L modes gives a good representation of the 

velocity statistics especially close to the wall.  

 

3.2. Influence of K-L data reduction on conformation statistics 

 
Fig. 2: Time-averaged trace of conformation tensor as a function of y+  for viscoelastic turbulent 

channel flow with 0 50Weτ = .  Solid line represents DNS results while dashed lines represent 

results from various K-L reconstructions.  

 

In figure 2, we compare conformation trace statistics from a number of K-L 

reconstruction cases with varying number of K-L modes against those obtained from a full DNS.  

Failure to match the DNS results is obvious.  Even with the K-L coefficients retrieved from 

projections onto 1714 K-L modes (which is the maximum that we had at hand), we were able to 

reproduce only about 50% of the trace corresponding to the maximum molecular extension 

observed near the buffer layer.  Most importantly, the physically relevant peak at the buffer 

region is lost in all but the larger K-L reconstructed cases and even there it is barely discernible.  

This peak however in the conformation trace offers considerable evidence on the role of the 

extensional deformation in stretching the polymer chains that is believed to be intimately linked 

to drag reduction [8, 10].  This is related to the increased extensional viscosity of the polymers 

which many previous studies have considered to be the prime reason behind drag reduction [8, 

10, 12, 13, and 20].An interesting observation from the plot in figure 2 is that there is a 

seemingly saturation effect of the number of K-L modes on the trace statistics in the 

reconstruction cases.  Increasing the number of K-L modes beyond 139 shows very little 

improvement in the trace statistics.  The discrepancies observed in trace plot can be linked to the 

severe truncation applied on the number of K-L modes, keeping only high energy, large-scale 

structures for reconstruction.  This also supports the saturation effect observation where it is 



possible that if we use a sufficiently large number of K-L modes, we will keep progressing 

towards the DNS results.  However, that will be at the cost of using a very large number of K-L 

modes which will defeat the purpose of developing a data-reduction model. That is to say, to 

properly approach a data-reduction model of a turbulent drag-reducing viscoelastic flow, one 

needs to account for the small-scale turbulence that is closely linked to polymer conformation in 

the flow field.  To accomplish this, we came up with a modification to the K-L procedure. 

 

In the new method, instead of maximizing 
2

( , )v ψ< >  under the normalization 

constraint ( ), 1ψ ψ = , we maximize 
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∇ ∇ =∑ .  Essentially, in the new procedure, we are maximizing the average 

of the squares of the projections of velocity gradients onto gradients of the eigenfunctions.  This 

way, we are able to preserve the linear characteristics of the eigenvalue problem.  The solution to 

this eigenvalue problem results in Laplacian ( 2∇ ) of the eigenfunctions optimally capturing the 

fluctuating dissipation in a linear sense.  Therefore, we called it the “Dissipative-KL” analysis. 

 

In a preliminary attempt, we implemented the Dissipative-KL analysis to create a 

selected set of top dissipative modes.  This selection was based on the eigenvalues of those 

modes.  Then as previously, we used this selected set of modes to obtain projection coefficients 

by projecting velocities from a DNS onto them.  The selected set of dissipative modes and the 

projection coefficients were then used, as earlier, to reconstruct velocity fields over time.  The 

conformation trace statistics obtained from the independent conformation realizations, gathered 

after utilizing the reconstructed velocity fields to integrate the constitutive equation, is shown in 

figure 3.  The physically relevant peak in the buffer region is much more pronounced now and 

overall the results are closer to the DNS.  Hence, the dissipative-KL analysis holds promise for 

properly accounting for the smaller (dissipative) scales of turbulence in order to preserve the 

right conformation statistics, as obtained from a DNS. 

 

 



Fig. 3: Time-averaged trace of conformation tensor as a function of y+  for viscoelastic turbulent 

channel flow with 0 50Weτ = .  Solid line represents DNS results while the dashed line represents 

result from the Dissipative-KL reconstruction. 

 

4. Conclusions 

 

The K-L analysis serves as a useful tool to approximate velocity statistics of a 

viscoelastic turbulent channel flow.  However, it fails to deliver good physically meaningful 

results so far as conformation trace statistics are concerned.  As the conformation trace is closely 

linked to the drag reduction mechanism in such flows, proper accountability of it is required for 

developing a data-reduction model of these flows.  A new method called “Dissipative-KL 

analysis” was devised to properly account for the conformation trace statistics.  Preliminary 

results for this method show substantial improvement in the conformation trace statistics.  An  

investigation is still underway to test the performance of this new method, either separately or in 

conjunction with K-L analysis, in order to develop a data-reduction model for viscoelastic 

turbulent channel flows. 
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