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Abstract
 
The aim of this contribution is to present a special translation of variables, which can 

be applied to logic-based and mixed-integer programming problems in process synthesis. Our 
research focused on the development of an alternative convex-hull representation for a logic-
based outer-approximation algorithm (OA), implemented in an automated process synthesizer 
MIPSYN. Three examples were solved in order to compare models with and without translation 
of variables.  

 
1. Introduction 

Recent developments in logic-based optimization (e.g. Grossmann and Biegler, 2004) 
are regarded as some of the most important achievements for effectively modeling and solving 
discrete-continuous synthesis problems. One of the possible representations of discrete-
continuous problems is the Generalized Disjunctive Programming (GDP), which was 
developed by Raman and Grossmann (1994) as an extension of the disjunctive programming 
paradigm developed by Balas (1974). GDP problems could be solved either by transforming it 
into mixed-integer programs or by the development of specific solution methods, e.g. the 
branch and bound algorithm with convex relaxation by Lee and Grossmann, 2000. Sawaya 
(2006) showed that the tightness of convex hull representation of disjunctions could be 
significantly improved by moving global constraints into representation of disjunctions.  

In this contribution we present another idea – a variable translation in order to have a 
narrower space of variables, which may then further increases efficiency when solving 
discrete-continuous problems. 
 

2. Variable translation 

In synthesis problems, continuous variables vs are usually defined within zero lower 
and non-zero upper bounds and constrained by  

 
 vLOy � vs � vLOy (1) 
 

in order to force non-zero bounds when alternatives are selected (y = 1). The main idea is to 
substitute a zero-lower-bounded variable vs of alternatives (0 � vs � vs,UP) by a non-zero-lower-
bounded variable (vLO � v � vUP), through the use of the following translation equation:  
 
 vs = v – vf(1 – y) (2) 



where vf is an arbitrarily-forced scalar from the interval (vLO,vUP) and y is a corresponding binary 
variable. When an alternative is selected, an integer term vf(1 – y) becomes zero and vs 
becomes equal to v, and when it is rejected, a value vf is subtracted from the variable v. When 
eq. (2) is applied to eq. (1) we obtain  
 

 vf + (vLO � vf)y � v � vf + (vUP � vf)y (3) 
 
Note that when y = 1, it follows that v is constrained within its non-zero bounds, and when y = 0, 
v becomes vf. In this way the original space of variable is preserved irrespective of discrete 
decisions. Intuitively, one could expect that retaining within the narrower original space of 
variables would increase the efficiency of the GDP. Two additional types were obtained 
besides a mixed integer type of variable translation (eq. (2)). The following relaxed translation 
formula is obtained if a binary variable y is relaxed to a continuous variable � defined between 
0 and 1. 
 
 vs = v – vf(1 – �) (4) 
 
A logic-based form of the variable translation is: 
 
 [Y: vs = v]  [�Y: vs = v – vf] (5) 
 
for a Boolean variable Y = true it follows that vs = v and for Y = false vs = v – vf.  
 
2.1. Alternative logic-based OA algorithm and MILP transformation 

 
Selection of a different variable translation type depends on a type of model (MIP –  

eq. (2), relaxed MIP – eq. (4), logic-based – eq. (5)). 
A convex hull representation is the tightest relaxation of disjunctions in Generalized 

Disjunctive Programming � GDP problem. It is generated from taking the linear combination of 
all points in feasible regions of disjunctions. By applying the convex hull relaxation to the GDP 
problem the (CHRP) problem given bellow is obtained. Since the problem is relaxed, the 
relaxed form of the variable translation (eq. (4)) is applied in order to translate its zero-lower-
bounded variables into nonzero-lower-bounded variables. The following alternative (A-CHRP) 
problem is obtained: 
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where vik are disaggregated variables and VLOik nonzero scalars in the problem (CHRP) 
forcing the nonzero lower bounds when an alternative is selected. Note that in the alternative 
formulation (A-CHRP), nonzero lower bounds can now be applied directly to the disaggregated 
variables vik. In both convex hull representations, global variables can in principle be defined 
between nonzero lower and upper bounds. However, in the conventional (CHRP) problem, 
disaggregated variables should always have zero lower bounds so that they can obtain zero 
values in the bounding constraints when �ik becomes zero. In the case of the alternative 
problem (A-CHRP), when �ik takes zero value, the corresponding variables vik in the bounding 
constraints are set to f

ikv . At the same time the terms vik and � �ikikv �	1f  in the balance equation 
and the objective function precisely cancel each other out, which is equivalent to obtaining 
zero values for vik in the original problem (CHRP). Note that if the continuous variables �ik are 
replaced by integer variables yik, MINLP reformulation is obtained. 

Lee and Grossmann (2000) showed that applying the outer-approximation method to 
the MINLP reformulation of the convex hull relaxation regarding problem (GDP) reduces to the 
logic-based OA method by Turkay and Grossmann (1996). Logic-based OA problems are 
usually solved through MILP transformation where Boolean variables Ys are replaced by binary 
variables ys, logical relations are formulated as integer constrains and disjunctives are 
represented either by big-M or convex hull representation. When a convex hull representation 
is considered, the following MILP master problem (CCH-MILP) is obtained and when it is 
reformulated by the translation of variables, using eq. (2), the following alternative MILP master 
problem (ACH-MILP) is obtained: 
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where L, SD and Dk are sets of NLP solutions, disjunctives and terms in disjunctives, 
respectively. The key feature of the alternative outer approximations (ineq. (8)) is that they 
preserve feasibility when alternatives are not selected when x is set to xf. This enables the use 
of variables with non-zero lower bounds. Note that if xf is set to xLO, ineq. (6) becomes 
redundant, if it is set to xUP, ineq. (7) becomes redundant. If the lower bounds are zero, the 
problem (ACH-MILP) reduces to the problem (CCH-MILP). The MILP model given above is 
implemented in the MINLP process synthesizer MIPSYN. 
 
2.2. Implementation in a process synthesizer MIPSYN 
 

Until recently only big-M models were used in MIPSYN, the successor of PROSYN-
MINLP (Kravanja and Grossmann, 1994), to solve MINLP synthesis problems. Now, the 
conventional convex hull and the alternative convex hull formulations, using translation of 
variables, are implemented in MIPSYN, too. The models are formulated in the most 
generalized form using various capabilities of the high-level language of GAMS. Data-and-
topology independent models were developed in this way. 



3. Examples 

Three synthesis problems of different sizes and complexities have been solved in 
order to test and compare the efficiencies of models with and without translation of variables. 
 
Example 1: The first example is a network synthesis problem with a simple model but very 
large-scale combinatorics with 400 binary variables. This numerical problem is an extension of 
the small flowsheet problem by Kocis and Grossmann (1989). Additional pairs of reactors were 
added to the superstructure. The objective is to minimize total cost at the fixed demand of the 
final outflow; xf was set to xLO.  
 
 200    5min 1

22
o

11
o

22
v

22
f

11
v

11
f �������� ixxcxcVcycVcycz iiiiiiiiiii  (9) 

 
The solution statistics until the third major MINLP iteration are reported in Table 1. As 

can be seen in Table 1, it was impossible with big-M formulation to solve the problem within a 
reasonable time, whilst both convex hull representations enable the solving of this high-
combinatorial problem very quickly. Note that with the same integrality gap and smaller 
number of constraints, the alternative formulation (ACH) could solve the problem in only a 
quarter of the CPU time needed to solve the problem using the conventional convex hull 
formulation (CCH). 
 

Table 1. MILP solution statistics of the reactor network synthesis problem. 
 

 Best
NLP

Int.
gap, % 

No. of eq./ 
No.of var. 

No. of 
iterations

No. of 
nodes

CPU for 
3 it., sec. 

Nodes/s
for 3 it. 

Big-M n/a n/a 3802/1801 n/a n/a n/a n/a 

CCH 183.87 0.868 3402/1801 23214 319 19.2 16.6 

ACH 183.87 0.868 2202/1801 4696 293 5.5 53.6 
CPLEX/GAMS version 21.7, processor PENTIUM 4 2.81 GHz, 512 MB of RAM. 

 
Example 2: The second example is the synthesis of a heat exchanger network (HEN) 
comprising different types of exchangers. Each match in a stage-wise superstructure is 
comprised of a double pipe, a plate and frame, a shell and tube exchanger, and a by-pass 
(Figure 1). Consideration of different types of exchanger enables the simultaneous selection of 
exchanger types; however, it significantly increases the number of binary variables. The model 
thus exhibits moderate complexity and high combinatorics (249 binary variables).  
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Match superstructure. 
 
Table 2 shows the statistics when xf was set to xLO. With respect to the integrality gap, number 
of iterations, CPU time and number of nodes, both convex hull representations significantly 
outperform the big-M one, whilst the efficiency of the alternative convex hull formulation is 
approximately twice that of the conventional formulation. 
 

Table 2. MILP solution statistics for the HEN synthesis problem. 
 

 Best
NLP

Int.
gap, % 

No. of eq./ 
No.of var. 

No. of 
iterations

No. of 
nodes

CPU for 
15 it., sec. 

Nodes/s
for 15 it.

Big-M 884.07 1.548 9214/5595 2248581 70257 500.9 140.3 

CCH 818.69 0.607 6894/5595 612529 35150 163.3 215.2 

ACH 818.69 0.607 4574/5595 321062 19411 83.8 231.6 
CPLEX/GAMS version 21.7, processor PENTIUM 4 2.81 GHz, 512 MB of RAM. 

 
Example 3: The last, allyl chloride example, is the synthesis of a reactor/separator network 
within an overall heat integrated process scheme, with a complex model and moderate-size 
combinatorics (184 binary variables). The reactor/separator superstructure (Figure 2) 
comprises a sequence of PFR/CSTRs with side streams and intermediate separators at 
different locations. Each PFR consists of a train of several alternative elements. The 
corresponding DAE system is modeled by the orthogonal collocation on finite elements. The 
overall model is highly nonlinear and nonconvex. Therefore, many numerical and other issues 
are present which makes any comparison between formulations harder, e.g. due to the effects 
of nonconvexities it is impossible to compare different formulations based on an integrality gap.  
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

Figure 2. Reactor/separator superstructure of the allyl chloride problem. 
 
Table 3 shows solution statistics until the 17th major MINLP iteration. As can be seen from 
Table 3, the efficiency of the ACH formulation is almost twice as good as that of CCH and four 
times better than that of Big-M. It should be noted that selection of the optimal final element in 
PFR is formulated by big-M constraints, so that the overall process ACH and CCH formulations 
are, in fact, combined ACH/Big-M and CCH/Big-M formulations. 
 

Table 3. MILP solution statistics of the allyl chloride problem 
 

 Best
NLP

Int.
gap, % 

No. of eq./ 
No.of var. 

No. of 
iterations

No. of 
nodes

CPU for 
17 it., sec. 

Nodes/s
for 17 it.

Big-M 81.924 0.190 2307/2193 4525051 19830 2166.5 9.2 

CCH 81.836 100.00 1743/1011 1503644 8053 960.3 8.4 

ACH 81.769 0.343 1230/1313 854049 7700 529.2 14.6 
CPLEX/GAMS version 21.7, processor PENTIUM 4 2.81 GHz, 512 MB of RAM. 

4. Conclusions 

By the use of translation of variables on the conventional convex hull representation 
the alternative convex hull representation was obtained. Initial experiences indicate that the 
alternative convex hull representation is generally more efficient when solving high-
combinatorial problems than the conventional one and has the smallest model sizes. In spite of 
the above mentioned efficiency, ACH formulations exhibit stronger sensitivity to the effects of 
nonconvexities, and the model representations are more complicated. Hence, when solving 
process synthesis examples the use of translation of variables on models is especially 
worthwhile when models are generated automatically as in the case with the equation-oriented 
modular synthesizer MIPSYN, since the likelihood of achieving the best efficiency of the 
MINLP search is increased. 

 
References 

Balas, E. (1974). Disjunctive programming: Properties of the convex hull of feasible points, 
technical report MSRR 348, Carnegie Mellon University, 1974. 
Grossmann, I. E. and L. T. Biegler (2004). Part II. Future perspective on optimization. Comput 
Chem Eng, 28(8): 1193-1218. 

VTOK-1

VTOK-2

C5

FS Stranski
produkti

Produkti

Feed 1 

Feed 2 

By- 
products 

Product 



Kocis, G. R. and I. E. Grossmann (1989). A Modeling and Decomposition Strategy for the 
Minlp Optimization of Process Flowsheets. Comput. Chem. Eng., 13(7): 797-819. 
Kravanja, Z. and I. E. Grossmann (1994). New Developments and Capabilities in Prosyn - an 
Automated Topology and Parameter Process Synthesizer. Comput Chem Eng, 18(11-12): 
1097-1114. 
Lee, S. and I. E. Grossmann (2000). New algorithms for nonlinear generalized disjunctive 
programming. Computers and Chemical Engineering, 24: 2125-2141. 
Raman, R. and I. E. Grossmann (1994). Modeling and Computational Techniques for Logic-
Based Integer programming. Comput Chem Eng, 18(7): 563-578. 
Sawaya, N. (2006). Reformulations, relaxations and cutting planes for generalized disjunctive 
programming, Thesis (Ph.D), Carnegie Mellon University, Carnegie Mellon University, 2006. 
Turkay, M. and I. E. Grossmann (1996). Logic-based MINLP algorithms for the optimal 
synthesis of process networks. Comput Chem Eng, 20(8): 959-978. 
 


