
 1

Modeling of Active Transport Systems 
 

Yaşar Demirel 
Department of Chemical and Biomolecular Engineering, University of Nebraska Lincoln,  

ydemirel2@unl.edu 
 
ABSTRACT 
 
Nonisothermal reaction-diffusion systems control the behavior of many transport and rate processes in 
physical, chemical, and biological systems, such as pattern formation and molecular pumps. Considerable 
work has been published on mathematically coupled nonlinear differential equations by neglecting 
thermodynamic coupling between a chemical reaction and transport processes of mass and heat. The 
thermodynamic coupling refers that a flow occurs without or against its primary thermodynamic driving 
force, which may be a gradient of temperature, or chemical potential, or reaction affinity. Energy coupling in 
the membranes of living cells plays major role in the respiratory electron transport chain leading to 
synthesizing adenosine triphosphate (ATP). The ATP synthesis in turn, is matched and synchronized to 
cellular ATP utilization. Consequently, the hydrolysis of ATP is thermodynamically coupled to the transport 
of substrates. This study presents the modeling of thermodynamically coupled system of a simple elementary 
chemical reaction with molecular heat and mass transport. The modeling is based on the linear 
nonequilibrium thermodynamics (LNET) approach by assuming that the system is in the vicinity of global 
equilibrium. Experimental investigations revealed that LNET is capable of describing thermodynamically 
coupled processes of oxidative phosphorylation, mitochondrial H+ pumps, and (Na+ and K+)-ATPase. 
Moreover, the LNET formulation does not require the detailed mechanism of the coupling. The modeling 
equations lead to unique definitions of cross coefficients between a chemical reaction and heat and mass 
flows in terms of kinetic parameters, transport coefficients, and degrees of coupling, which are measurable. 
These newly derived cross coefficients need to be determined to describe some coupled reaction-transport 
systems. Some methodologies are suggested for the determination of the cross coefficients and some 
representative numerical solutions for coupled reaction-transport systems are presented. Such modeling may 
improve our understanding of active transport by molecular pumps. 
 
 
INTRODUCTION 
 
Considerable work has been published on mathematically coupled differential equations on reaction-diffusion 
systems by neglecting the thermodynamic coupling. Here, the thermodynamic coupling refers that a flow (i.e. 
heat or mass flow or a reaction velocity) occurs without its primary thermodynamic driving force, or opposite 
to the direction imposed by its primary driving force. The principles of thermodynamics allow the progress of 
a process without or against its primary driving force only if it is coupled with another spontaneous process. 
This is consistent with the statement of second law, which states that a finite amount of organization may be 
obtained at the expense of a greater amount of disorganization in a series of coupled spontaneous processes.  

Thermodynamically coupled chemical reaction-transport systems control the behavior of many transport 
and rate processes in biological systems, and require a through analysis accounting the induced flows by cross 
effects [1-10,11-13]. More than fifty years ago, Turing [1] demonstrated that a reaction-diffusion system with 
appropriate nonlinear kinetics can cause instability in a homogeneous steady state and generate stable 
concentration patterns. Also the energy coupling in the membranes of living cells plays major role in 
synthesizing adenosine triphosphate (ATP). The ATP synthesis in turn, is matched and synchronized to 
cellular ATP utilization ++ ++=++ out2ini HOHATPHPADP nn . Here ‘in’ and ‘out’ denote two phases 
separated by a membrane, and n is the ratio H+/ATP, showing the level of transmembrane proton transport for 
each ATP to be synthesized [7]. Consequently, the hydrolysis of ATP is coupled to transporting substrates 
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and maintaining the essential thermodynamic forces of ion electrochemical gradients [2-6]. For example, 
Ca+2-ATPase in the plasma membranes of most cells pump Ca+2 against a steep concentration gradient out of 
cytosol, while simultaneously counterport H+ ions [5].  

This study presents the modeling equations for thermodynamically and mathematically coupled system of 
a reversible elementary reaction with heat and mass flows. Such modeling may improve our understanding of 
some coupled processes, such as active transport by molecular pumps. The modeling is based on the linear 
nonequilibrium thermodynamics (LNET) formulations by assuming that the system is in the vicinity of global 
equilibrium (GE). Experimental investigations revealed that LNET is capable of describing 
thermodynamically coupled processes of oxidative phosphorylation, mitochondrial H+ pumps, and (Na+ and 
K+)-ATPase, because mainly due to enzymatic feedback [2-5]. Moreover, the LNET formulation does not 
require the detailed mechanism of the coupling [4,5,15-18]. Kinetic description is based on specific model 
and lacks the generality characteristics of thermodynamic formulations [3].  
 
 
BALANCE EQUATIONS  

Consider a homogeneous elementary reaction between a substrate (S) and a product (P) S P
f

b

k

k
⎯⎯→←⎯⎯  where kf 

and kb are the forward and backward reaction rate constants, respectively. This type of reaction system is 
common in chemical and biological systems [2,17,18]. The well-known balance equations are 
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where Ji mass flow of component i, Jq is the vector of reduced heat flow 
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flow, iH  is the partial molar enthalpy of species i, and ΔHr is the heat of reaction. The reaction velocity is 
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, and the parameters νS and νP are the stoichiometric coefficients, (νS = -1).  

 
 
PHENOMENOLOGICAL EQUATIONS (PEs) 
 
Reaction-diffusion systems with heat effects represent open and nonequilibrium systems with thermodynamic 
forces of temperature gradient, concentration gradient, and affinity. For the chemical reaction-transport 
system the local rate of entropy production is [8,21]  
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For charged species, we would use electrochemical potential and electrochemical affinity. Using 
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where 
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potential of species i, and A is the affinity ( ∑−= iiA μν ). Equation (5) consists of scalar processes of 
chemical reactions and vectorial processes of heat and mass flows, while it excludes viscous, electrical, and 
magnetic effects. Equation (5) identifies the following independent conjugate flows Ji and forces Xk to be used 
in the linear phenomenological equations ( i ik kJ L X= ∑ ) in the vicinity of GE [13,25,30,31] 
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The phenomenological coefficients Lik are related Onsager’s reciprocity, Gibbs Duhem equation at 
equilibrium, and the choice of reference frame for diffusivities. Due to Onsager’s reciprocal rules (Lik = Lki) 
the number coefficients to be determined would be six instead of nine. Onsager’s reciprocal relations states 
that Lik = Lki if Ji and Jk have the same parity under time reversal, and Lik = -Lki if Ji and Jk have the opposite 
parity. In the absence of pertinent symmetries or invariances, all types of cross-couplings are possible and 
lead to nonvanishing cross coefficients Lik. If these symmetries are not exact then the corresponding cross-
couplings would be weak and negligible [22]. For the nonvanishing cross coefficients Lik, all the forces 
contribute for each flow. Here, Eqs. (6) to (8) take into account the thermodynamic couplings between 
vectorial processes and between vectorial and scalar processes, which is possible in an anisotropic medium 
according to the Curie-Prigogine principle [15]. Therefore, the cross-coefficients LSr , LrS, Lqr, and Lrq would 
vanish in isotropic media, or would have vectorial character due to morphology of the interface, or due to 
compartmental structure with anisotropic character. In active transport in biological cells, the hydrolysis of 
ATP is coupled with the flow of sodium ions outside of the cell. The flow direction is controlled by the 
structure of the membrane and coupling mechanisms in mitochondria.  

The cross coefficients determine the degrees of couplings between the pair of flows 
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Here, rSq is the degree of coupling between heat and mass flows, rSr is between chemical reaction and mass 
flow, and rrq between chemical reaction and heat flow. The vectorial character of the degrees of couplings rSr 
and rrq may reflect the morphological and/or compartmental structure of medium where couplings occur as 
well as the properties of the cross-coefficients LSr and Lrq [2,5,8,15,16,18].  

Identification of some of the phenomenological coefficients Lik is discussed elsewhere [31]. We may 
define two new effective diffusion coefficients of (DT,e and DD,e) that are related to the thermal diffusion and 
the Dufour effect, respectively 
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As the general transport equations are for an anisotropic medium to support the thermodynamic coupling 
between the scalar and the vectorial processes, the transport coefficients such as k and D may become tensors 
of the second rank κ and D [8,18,20]. Here the effective transport coefficients incorporating the effects of the 
medium are taken into account for the simplicity. 
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REACTION VELOCITY 
 
The affinity for the reaction is PS μμA −= . The reaction velocity Jr in terms of affinity is [8,16,18] 
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where rf f SJ k C= . If we expand Eq. (12) at near GE state, which may be specified by the inequality 
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corresponding affinity since Jrf,eq becomes constant due to uniform concentration at equilibrium when a 
system is in the vicinity of GE with fast diffusion and heat conduction processes. The coefficient Lrr is  
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where ko is the frequency and Ef is the activation energy for the forward reaction. The Lrr is dependent on the 
rate constant and consequently on the equilibrium concentration CS,eq and the amount of chemical catalyst. 

Linear flow-force relations are valid when the Gibbs free energy ranges less than 1.5 kJ/mol for chemical 
reactions [15,18]. However, some selected biological pathways occur at near GE conditions [2,3], and for 
some chemical reactions, the formalism of LNET can be used in wider ranges than usually expected [14,25-
28]. By conservation of mass, some flow-force relations of enzyme catalyzed and other chemical reactions 
can be described by a simple hyperbolic-tangent function. Therefore, a plot of reaction velocity versus affinity 
has three regions; the regions at very high positive and negative values of affinity, the reaction velocity is 
almost independent of affinity. In between, however, the reaction velocity varies smoothly leading to a quasi-
linear region around the inflection point. This region extends the linear flow-force relations over a 7 kJ mol-1 
with an error in the reaction velocity less than 15%. This behavior is independent of the reaction rate 
constants, and mainly occurs due to conservation conditions [27].  
 
 
THE BALANCE EQUATIONS WITH THERMODYNAMIC COUPLINGS 
 
With these newly defined primary and cross coefficients, Eqs. (6) to (8) become 
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By inserting Eqs. (14) to (16) into Eq. (1) and Eq. (3), we may describe the thermodynamically and 
mathematically coupled system of chemical reaction and heat and mass flows 
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Under mechanical equilibrium, we have 
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where Hi is the partial enthalpy of species i. By using the definition of affinity ( S PA μ μ= − ) and Eq. (19) 
for the two components S and P with the Gibbs-Duhem equation ( 0=μ∇+μ∇ PPSS CC ) and the following 
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Substituting Eq. (20) in Eqs. (17) and (18), we have  
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where (A/RT) is the dimensionless affinity A*. Arrhenius equation yields ( )ln / ( ) /( )f b b fk k E E RT= − , 

and Eqs. (21) and (22) become 
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One-dimensional forms of Eqs. (23) and (24) in the y-direction are  
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where L is the half thickness of the slab. Nondimensional forms of Eqs. (25) and (26) become 
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DaS and DaP are the Damköhler numbers and represent the ratios of the forward and backward reaction rates 
to the diffusion velocities (Di,e/L). Therefore, they measure the intrinsic rates of the reactions relative to that 
of the diffusions, and represent an interaction between reaction and diffusion [20]. If the reaction is very fast, 
Damköhler number is large. The parameter b is defined in Eq. (26). These equations suggest that the degree of 
couplings beside the other parameters would control the evolution and stability of the system. Therefore, 
induced effects due to various coupling phenomena can increase the possibility that the system may evolve to 
multiple states and diversify its behavior [27, 30]. The parameters ε, σ, ω, and κ above are associated with the 
cross coefficients and hence control the coupled phenomena in the y-direction. Specifically, the ε and ω 
control the coupling between mass and heat flows, while the σ and κ control the coupling between the 
chemical reaction and mass flow, and chemical reaction and heat flow, respectively. The initial and boundary 
conditions become 
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Accuracy of the solutions obtained from Eqs. (28) and (29) depends on the reliable data, such as the effective 
transport coefficients and cross coefficients. The parameter b in terms of the degrees of couplings rqr and rSr 
may improve the accuracy since the degrees of couplings vary between –1 and +1. Some processes will not be 
dependent on some of the forces when some certain cross coefficients vanish naturally. For example, some 
degrees of imperfections due to parallel pathways of reaction or intrinsic uncoupling within the pathway itself 
may lead to leaks and slips in mitochondria [3,5].  
 
Some special cases of coupled phenomena- Possible thermodynamically coupled systems: (a) Coupled 
phenomena at stationary state, (b) No coupling exists between the heat flow and chemical reaction: Lrq = Lqr = 
0., (c) No coupling exists between the mass flow and chemical reaction: LrS = LSr = 0. In all the systems 
above, heat and mass flows are still thermodynamically coupled [31].  
 
Chemical reaction coupled to mass flow: Lrq = Lqr = 0- This specific coupling may approximately represent 
the active transport in biological cells in which hydrolysis of ATP is coupled with the uphill transport of ions. 
Experiments show that biological energy coupling systems shows that the LNET is capable of describing 
mitochondrial H+ pumps [3] and helps understanding molecular slips and ion leaks of Ca+2 and H+ [5,7].  

A representative volumetric rate of entropy production equation for active transport is [2,31] 
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For the active transport in a biological cell, the chemical reaction term ( )/rSJ A T  represents the hydrolysis 
of ATP, which facilitates pumping the ions opposite to the direction imposed by their thermodynamic forces, 
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where x is the ratio of thermodynamic forces ( )]//()/1[( TACT SS∇λ . The optimal efficiency would be a 
function of the degree of coupling [2-4,13].  

When the cross coefficients Lrq and Lqr vanish in Eqs. (14) to (16), the PEs become 
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so that the one-dimensional balance equations are 
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By relating the cross coefficient to the degree of coupling rSr, the cross coefficient LSr may be eliminated  
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and the parameters σ’ and κ’ are defined in terms of the degree of coupling rSr  
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The parameter κ’ combines the forward reaction rate constant, diffusivity coefficient, and thermal 
conductivity, and hence may reflect an ‘indirect interaction’ between chemical reaction and heat flow with 
vanishing cross coefficients of Lrq and Lqr. During a diffusion-controlled reaction, the progress of the reaction 
may be affected by the morphology of the interface, which controls the boundary conditions for the transport 
problem [27-29]. Morphological stability of interfaces in nonequilibrium systems may lead to self-
organization and/or pattern-formation in biological, physical, chemical, and geological systems [26,29].  
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Concentration and temperature profiles - The Mathematica is used to solve Eqs. (35) and (36). Figure 1 
displays the dynamic behavior of the concentrations and temperatures at two different Damköhler numbers. 
For the fast reaction case with DaS = 100.0, nonequilibrium region is considerably smaller and attained at a 
shorter time. For the slow reaction case with DaS = 1.0, the system remains in nonequilibrium for most of the 
time and throughout the thickness of the film. The surfaces of temperature closely follow the change in 
concentrations, and reflect the effect of Damköhler numbers. As expectedly, the rise of temperature is small 
as the value of β is relatively small [31]. 
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Figure 1. Dimensionless temperature and concentration profiles obtained from Eqs. (35) and (36) with γ = 27, β = 
0.066, Le=  0.11, ε = 1.0, ω = 0.01, A*= 0.1, σ’= 0.1, κ’ = 0.001. 
 
 
SUMMARY and CONCLUSIONS 
 
The balance equations are derived for thermodynamically and mathematically coupled system of chemical 
reaction and heat and mass flows. This effort may be a starting point to understand the molecular coupled 
phenomena between vectorial and scalar processes, such as active transport in biological cells. These 
modeling equations are based on the linear nonequilibrium thermodynamics approach assuming that the 
system is in the vicinity of global equilibrium and has anisotropic character. The equations have revealed 
definitions of some unique parameters related to the cross coefficients between the scalar process of chemical 
reaction and the vectorial processes of heat and mass flows. These parameters combine kinetic parameters, 
transport coefficients, and degrees of thermodynamic couplings, which are measurable quantities. The 
representative solutions of the modeling equations for the coupled chemical reaction-mass flow system are in 
line with the behavior of fast and slow chemical reactions in a film.  
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