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1 Introduction

Evaporating drops and thin films have numerous applications, from nanometric photoresist films
in semiconductor applications to small sessile drops used for analysis of DNA microarrays [1].
Evaporating sessile drops are particularly interesting due to nonuniform drop thickness and
the presence of contact lines (separating liquid, gas and solid phase). These factors may lead
to nonuniform evaporation along the liquid/gas interface, that induces temperature gradients
and related Marangoni effects. The Marangoni effects are a critical ingredient in explaining
important problems involving deposits, such as the well know coffee-stain problem [2] and its’
numerous applications [1]. Hence, the benefits of thorough understanding of the evaporation
process in sessile drops are evident.

Although the problem of an evaporating drop on a thermally conductive solid substrate
appears to be rather simple, important aspects regarding this very basic process remain unknown.
This is mainly due to the fact that the evaporation phenomena involves an interplay of a number
of physical effects, including mass and energy transfer between the three phases, diffusion and/or
convection of the vapor in the gas phase, coupled with complex physics of the contact line (see,
e.g., [3, 4]). Even if one is to ignore the issues related to the contact line region and the thermal
effects in the solid phase, the resulting “2-sided” model that only includes processes in the liquid
and the gas phases provides a mathematical obstacle of considerable difficulty [5]. Various
simplifications of the 2-sided model have surfaced over the last decade. They rely on estimating
the importance of relevant physical processes, thereby reducing the complex problem to a single
phase consideration (liquid or gas). However, these estimates involve quantities that are not
know precisely enough.

The full 2-sided model can be first simplified by noting that the viscosity and thermal con-
ductivity of vapor are small compared to those in the liquid. An additional assumption that
the gas phase is free of convection, reduces the 2-sided model to a so called “1.5-sided” model,
where only the processes in the liquid and the diffusion of vapor into surrounding gas are con-
sidered [6]. A commonly used simplification of the 1.5-sided model is achieved by assuming that
the time-scale relevant to diffusion of vapor into surrounding gas is much longer than the one
relevant to the phase-change [7, 8]. As a result, the processes in the liquid phase can be ignored.
This approach also involves the assumption of thermodynamic equilibrium at the evaporating
interface, and critically relies on the relevant thickness of the gas phase, which is unknown. As
an outcome, the problem is reduced to a simple Laplace’s equation for concentration of vapor
in the gas phase. At this point, one may notice an electrostatic analogy of finding an electric
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field (mass flux) in the exterior of a lens-shaped conductor (the drop) at a fixed potential (vapor
concentration) [2, 9]. This “lens” evaporation model has been used in problems involving evapo-
rative drops with both pinned (stationary) [7, 10] and moving contact lines [11], for evaporation
of alkane drops [12], and in predicting the behavior of colloidal drops [9, 13], as well as the
temperature at the liquid/gas interface [14].

On the other hand, if one shifts focus to the liquid phase, the heat diffusion through the
liquid that supplies the heat to the liquid/gas interface, and the evaporation itself are the most
relevant physical processes. Estimating the significance of these processes relies on the value of
a single parameter, the accommodation coefficient α, which describes the probability of phase-
change [5, 15]. In particular, the limit α→ 0 leads to a reaction-limited regime, with interface at
non-equilibrium, while the limit α→ 1 leads to a (heat) diffusion-limited regime, with interface
at equilibrium. Unfortunately, the value of α is not know well enough – a variety of values in a
wide range O(1)−O(10−6) have been used in literature, often with very little justification [5, 16].
If we assume that α is very small (e.g. O(10−4)), the corresponding evaporation time-scale is
not only much longer than the liquid heat diffusion time-scale, but also significantly longer than
the vapor diffusion time-scale [17]. As a result, the diffusion of vapor in the gas phase can be
ignored, and the model is reduced to a non-equilibrium one-sided (“NEOS”) evaporation model.
The NEOS model has been extensively used for evaporating thin films [5, 16, 18], but only few
works have applied it to the problem of evaporating drops [13, 19, 20].

Both lens and NEOS evaporation models require the use of unknown quantities, thereby
making it difficult to decide which one of these two models is more appropriate. In this paper,
we introduce a mathematical model for describing the evolution of drop thickness. We keep
the mass flux expression explicitly in our formulation, which enables us to use both of these
evaporation models. Next, we describe a set of experiments which allow us to calculate the
volatility coefficients corresponding to each model. Finally, we show how our mathematical
model can be used together with the experimental data to predict which evaporation model,
lens or NEOS, is more suitable for describing the evolution of small deionized water (DIW)
drops evaporating from smooth silicon (Si) wafers.

2 The mathematical model

The model consists of Navier-Stokes equations for liquid, coupled with the energy equations
for solid and liquid, and an appropriate expression for mass flux, J . We model the solid-liquid
interaction through a disjoining pressure model (van der Waals intermolecular forces – vdW),
resulting in use of precursor film, and apply the lubrication approximation. More detailed
description of the derivation procedure can be found in [17, 20]. In cylindrical coordinates and
assuming azimuthal symmetry, we obtain the following PDE for the drop thickness h(r, t)
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Figure 1: The goniometer: camera, syringe and the deposition platform.

The individual terms of eq. (1) represent effects due to viscosity, evaporation, surface tension,
vapor recoil, Marangoni stresses (two terms), vdW forces, and gravity, respectively. The defini-
tions of nondimensional coefficients appearing in eq. (1), as well as the list of values of physical
parameters used are given in [15, 20].

The key point in eq. (1) is the mass flux, J . The details of the derivation of the expressions
for J(h) corresponding to lens and NEOS models are given elsewhere [17]. Here, we only list
these expressions and briefly comments on their properties. The expression for J appropriate
for lens model is

J =
χ

hλ
, (2)

where χ is the volatility parameter, while the exponent λ is a function of the contact angle Θ:
λ = 0.5−Θ/π [7]. We note that according to eq. (2), J diverges at the contact line (h → 0). In
the case of NEOS model, the expression for J is given by

J =
1

h + W + K , (3)

where K = K(α) ∝ 1/α is the coefficient of non-equilibrium, while W accounts for thermal
properties in the solid [16, 20]. Typically, W +K ∼ O(10) and hence, the mass flux in this case
depends only weakly on h. Crucial volatility parameters χ and α are obtained from experiments
which we describe next.

3 The experiments

The experiments are performed in room conditions (298K and 50% relative humidity) and in
open atmosphere, with minimal hindrance by undesired external convection. We use pure DIW
and smooth semiconductor grade Si wafers, treated by chemical-mechanical polishing that pro-
duces surface roughness (Rms) of 0.5nm. The drops are deposited manually using a Hamilton
1700 Series GASTIGHT syringe and allowed to evaporate freely. The temperature of the solid
wafers is not controlled. The measurements are carried out using a KSV CAM200 goniometer
with built-in software for analyzing the data. The goniometer consists of a horizontal platform
with automated vertical and horizontal movement onto which the wafer is placed, the syringe
clamp, and the camera. Figure 1 shows the complete experimental set-up. As the experiments
proceed, the camera automatically captures images of the drop profile at pre-set time intervals.
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The experiments were carried out repeatedly in order to ensure the reproducibility. All experi-
ments involve 4.9µl DIW drops and focus on the time interval [0, 106s]. With the exception of
a brief interval (< 2s) immediately after the deposition, during which the drop shape changes
rapidly, the evolution is relatively slow. Hence, the images are taken at 8s intervals.
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Figure 2: (a) Snapshot of evaporating DIW drop on Si substrate; (b) Volume and radius of the
drop as a function of time (experimental results).

The built-in software examines each individual image, first checking if the spherical cap
approximation can be applied to the drop profile. Based on this approximation, the software
outputs the radius R, height at the center of the drop H , and the contact angle Θ, enabling us
to calculate the drop volume and surface area corresponding to each image. Therefore, we are
able to monitor the evolution of these parameters as the experiment proceeds. Figure 2 shows
an image captured by the camera (a) and typical evolution of drop volume and radius (b). In
agreement with previous works, Figure 2(b) shows linear decrease of volume for the considered
time interval [7, 9, 21]. However, we find neither significant stick-slip motion, nor contact line
pinning, which were documented in [7]. Possible reasons for this difference are smoothness of
Si wafers and purity of DIW which we use. Furthermore, the experimental data indicates that,
except for aforementioned brief sequence, the value of the contact angle changes only slightly
during the considered time interval. Therefore, in our model, moving contact lines and fixed
contact angle are considered.

The extraction of volatility coefficients, χ and α, from the experimental data is accomplished
in the following manner. The considered time interval [0, 106s] is divided into short subintervals,
with endpoints corresponding to the time instants t1, t2, ..., tN , for which experimental data are
available. This procedure allows us to compute the evaporation rate Jrate

k, corresponding to
each subinterval [tk, tk+1], k = 1, 2, ..., N , by using the experimental data for volume and surface
area of the drop at the endpoints of these subintervals. In particular, Jrate

k is found by using
the change of volume and surface area during subinterval [tk, tk+1]. The crucial observation is
that the calculated value of Jrate

k has to match the integral of an appropriate expression for
mass flux J , integrated over experimentally recorded surface of the drop (spherical cap) at the
time instant tk+1

Jrate
k =

∫

Sk+1

J dS =
∫ 2π

0

∫ Rk+1

0
J(r)Φ(r)r dr dϑ, (4)

where Rk+1 is the radius of the drop and Φ(r) is the Jacobian corresponding to the drop surface
at time tk+1. The expression for J(r), depending on which evaporation model is considered, is
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the mass flux given by either eq. (2) or eq. (3), rewritten as a function of r, the radial distance
from the center of the drop toward the contact line.

In particular, for the lens model, we have

Jrate
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0
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χkd0
λJscr
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)λ
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r2
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2 − r2
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where parameter set (Rk+1, Bk+1, dk+1) describes the spherical cap at time tk+1, d0, Jsc and b are
the appropriate length-scale, mass flux scale, and non-dimensional precursor thickness respec-
tively, while χk is the volatility coefficient appropriate throughout the time interval [tk, tk+1] (for
details see [22]). Integrating with respect to ϑ while treating χk as constant yields

χk =
Jrate

k

2πd0
λJscBk+1Ik+1

, (6)

where Ik+1 denotes the integral

Ik+1 =
∫ Rk+1

0

r
√

Bk+1
2 − r2

(√
Bk+1

2 − r2 − dk+1 + b
)λ dr, (7)

which is calculated numerically for each k = 1, ..., N − 1. Having calculated χk’s we obtain the
value for χ corresponding to the time interval [0, 106s] by averaging over all χk’s.

In the case of NEOS model, eq. (4) leads to

Jrate
k =

∫ 2π

0

∫ Rk+1

0

d0Jscr
√

1 + r2

Bk+1
2−r2

√
Bk+1

2 − r2 − dk+1 + b + d0 (K(αk) + W)
dr dϑ, (8)

where αk is the accommodation coefficient valid in the time interval [tk, tk+1], treated as constant.
While the factorization of χk from eq. (5) is achieved in a straightforward manner, the nature
of eq. (8) does not allow equivalent factorization of αk, making the calculation of αk a bit more
complex. Integration of eq. (8) with respect to ϑ leads to

Jrate
k = 2πd0JscBk+1Ξk+1(αk), (9)

where Ξk+1(α) is given by

Ξk+1(αk) =
∫ Rk+1

0

r
√

Bk+1
2 − r2(d0 (K(αk) + W) − dk+1 + b) + Bk+1

2 − r2
dr. (10)

The problem of solving for αk is therefore reformulated into a minimization problem

αk = min
αk∈[10−6,1]

Γ(αk), (11)

where Γ(αk) is given by

Γ(αk) =

∣∣∣∣∣
Jrate

k

2πd0JscBk+1
− Ξk+1(αk)

∣∣∣∣∣, (12)
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Figure 3: Volatility coefficients for the DIW/Si configuration for the first 106s. Stars indicate
calculated values, dashed lines indicate corresponding average value. (a) lens model: χ =
(5.5 ± 1) · 10−2; (b) NEOS model: α = (3.4 ± 0.7) · 10−4.

and is solved numerically for all k. As in the case of χ, the value of α valid for the whole time
interval [0, 106s] is obtained by averaging over all αk’s.

We expect that the outlined method for calculating volatility coefficients χ and α is more
accurate than simply using the measured dryout time to estimate the mass flux, as it is well-
know that at late stages of evolution, the evaporation rate may be reduced [21]. Figure 3 shows
the volatility parameters χ and α over a time interval of 106s. While some noise exists in our
experimental data, we note that it is evident from Figure 3 that the values of both volatility
coefficients do not exhibit tendency for growth or decay as evaporation proceeds, and remain
close to their respective mean values. Therefore, the assumption that these volatility coefficients
are constant is reasonable.

Finally, in order to ensure the quality of our experimental data, we apply the method outlined
in this section to the experimental data from [7]. In particular, we focus on data regarding small
water drops evaporating on a glass cover slip. Although the experimental set-up in [7] differs
from the one considered here, namely, it involves pinned contact lines, we obtain χ = 5.1 · 10−2

and α = 3.1 · 10−4, which are in excellent agreement with the results for χ and α obtained from
our own data. Therefore, we have an independent confirmation that our experimental results
are reasonably accurate.

4 The comparison of evaporation models and discussion

Having calculated the volatility coefficients for the two evaporation models, all necessary ingre-
dients for our mathematical model are in place. In order to compare the two evaporation models
directly and against the experimental data, we construct a numerical code for solving eq. (1).
Our numerical code is the extension of the code used in [20]. Figure 4a) shows the evolution
of the drop volume as a function of time. We find good agreement between the experimental
results and the NEOS model for a DIW drop considered here. The lens model, on the other
hand, overestimates the volume loss due to evaporation. Hence, at least for a DIW drop evapo-
rating on Si substrate, Fig. 4a) indicates that the NEOS model predicts better the volume loss
compared to the lens model. We note that the possible sources of the difference between these
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Figure 4: (a) Volume of an evaporating DIW drop: comparison of the models with the experi-
ment. The lines correspond to the mean values of volatility parameters, and the error bars to
those obtained using the mean values ± standard deviation. (b) Temperature of the liquid-gas
interface predicted by the two models at the final time shown in (a) (using mean values of α
and χ).

results and the established ones [7, 10], are that we consider drops which do not experience
contact line pinning, and that our drops are significantly larger than those considered in [7]. A
combination of these factors may result in a situation where lens model is more favorable. We
further discuss these differences elsewhere [17].

Figure 4b) shows, perhaps the most surprising result of this comparison. It indicates that the
two models predict qualitatively different temperature profiles along the liquid/gas interface. In
the NEOS model, the fact that the heat supplied from the solid is larger than the heat loss due to
evaporation leads to an increase of temperature as one moves from the center. On the other hand,
the lens model predicts significantly larger evaporative flux in the contact line region, therefore
leading to a sharp decrease of temperature there. The former result is consistent with the results
obtained using the lens model, and similar parameter values, although under the assumption
of a pinned contact line [10, 14]. A curious feature of the lens results shown in fig. 4b) is a
‘stagnation point’, where the temperature gradient changes sign. A temperature profile with
such a maximum could be used for explaining the occurrence of stagnation points in recently
recorded experiments [23], although this phenomena, a necessary ingredient for formation of
ring-like deposits typical for evaporating colloidal drops, could be based on entirely different
physical grounds [9].

We find it intriguing that the results regarding the evolution of drops’ volume, radius, and,
in particular, the liquid-gas interfacial temperature, produced by the two commonly used evap-
oration models are so qualitatively different – the resulting Marangoni forces may act in the
opposing directions. We hope that the results presented here will encourage more elaborate
experiments, particularly those involving direct measurement of the interfacial liquid-gas tem-
perature, an ultimate test for any evaporation model.
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