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Introduction 

 

 Drops are formed when a liquid is injected from a micro-capillary into another immiscible liquid. 

The resulting drops are used as emulsions for the production of food, medicine, cosmetics and so on. 

When the drops are mono-dispersed in micro- or nano- scale size, they are applied to the production of 

microcapsules. Recently, a technology of the drop formation with a co-flowing ambient fluid has been 

developed, and the size of the resulting drops by this technology becomes much smaller than the size of 

the micro-capillary
1
.  

 The mode of the drop formation is categorized into two: dripping and jetting. In dripping mode, 

the drops break off near the capillary, whereas, in jetting mode, nearly uniform drops are produced at the 

tip of the jet ejected from the capillary. The diameter of drops in jetting mode is smaller than that in 

dripping mode. Furthermore the resulting drops produced by jetting mode are monodispersed. 

 In this study, we simulate numerically the formation of jets and drops from a micro-capillary in 

co-flowing ambient fluid and examine the transition point from dripping to jetting. 

 

 

Governing Equations and Numerical Method 

 

 Figure 1 shows a schematic of the problem. The dispersed phase of viscosity  µin and density ρin 

is injected from a micro-capillary into the co-flowing continuous phase of viscosity µout and density ρout. 

If the two immiscible fluids are incompressible and Newtonian, the governing equations are the 

continuity equation and the Navier-Stokes equation 
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Figure 1. Jet and drop formation from a capillary in co-flowing ambient fluid 
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Eqs. (1) and (2) have been non-dimensionalized by the characteristic scales: the length Rin and the 

velocity uin. Here, Rin is the nozzle radius, uin is the average injection velocity of the dispersed phase. 

These equations are discretized by finite difference approximations on the two dimensional 

axisymmetric coordinate and those approximated equations are solved by MAC method. The position of 

the interface between the dispersed and continuous phases is traced by a Front-Tracking method
2
. The 

aspect ratio of the computational domain (r:z) is 1:24, and the resolution is 64 × 1536 determined by grid 

refinement tests. The boundary conditions are as follows: symmetry on the central axis, outflow on the 

right, inflow on the left, and no-slip on other boundaries. As the inflow conditions, the velocity 

distribution of the dispersed phase is given by 
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and, that of the continuous phase is given by 
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where Rout is the distance between the central axis and the wall of the capillary, Rth is the thickness of the 

capillary wall, r is the radial coordinate, uout  is the average velocity of the continuous phase, and α is the 

ratio (Rin+Rth)/Rout.  

 For numerical simulations, the ratios of the viscosity (µout /µin), and the density (ρout/ρ in) are fixed 

at 1.5 and 0.8, respectively. The geometry of the nozzle is also fixed as: Rout/Rin = 3.0, L/Rin = 72.0, and 

Rth/Rin = 0.1. The ratio of the injection velocities (uout /uin) is varied between 0.03 and 20.0. 

 

 

Results and Discussion 

  

Figures 2 and 3 show the typical images of drop formation. The values and the definition of the 

dimensionless numbers are shown in the caption of the figures. When Re and We are small (less than 1), 

the drops break off near the capillary and satellite drops are formed behind the primary drop (Figure 2). 

This mode of the drop formation is known as “dripping”. As the flow rate of the continuous phase 

increases (Reout = 2.13), a jet is formed and the drops are produced at the tip of the jet (Figure 3). This 

mode is called “jetting”. The diameter of the drops in jetting mode is smaller than that in dripping mode, 

and the resulting drops in jetting mode become mono-disperse. 

Figure 4 shows the radius of the drop versus the velocity of the continuous phase. The triangle 
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keys represent the computational results by Hua et. al.
3
 The radius decreases with the velocity of the 

continuous phase. When the velocity of the continuous phase is approximately 9.5, there is a jump in 

drop radius. This point is the transition from dripping to jetting. The results presented in this study are in 

close agreement with the ones by Hua et al. 3 The solid line indicates that the predicted radius by linear 

stability theory. According to the Tomotika’s linear stability theory
4
, the most unstable wave number is 

obtained. If a spherical drop is generated with the volume of one wavelength, the corresponding drop 

radius is given as Rdrop= 2.02Rjet. The radius in jetting mode is also in good agreement with the predicted 

radius by the theory. 

Figure 5 shows the transition from dripping to jetting on the diagram of Caout(=µoutuout/σ ) and 

Wein(= 2Rinuin
2ρin/σ ). These parameters describe, respectively, the magnitude of the viscous shear force 

from the outer liquid and the magnitude of the inertial force from the inner liquid relative to the surface 

tension force. If no flow is imposed in the continuous phase, Homma et.al.
5
 reported that the jetting mode 

is obserbed when Wein > 2. Moreover, Utada et. al.6 reported that transition boundary is on Caout + Wein ~ 

O(1) by their experimental study. In Fig. 5, the solid and dashed lines represent the transition boundary 

for our computational and Utada’s results, respectively. In our result, jetting mode is observed when Wein 

> 0.8 or Caout > 0.1. This means that a jet forms even low We and Ca, when both the inertial force of the 

dispersed phase and the drag force of the continuous phase are low. Thus numerical jets are more stable 

than experimental jets. Since, the jet length is influenced by the disturbances generated at the exit of the 

capillary we believe that the disturbances generated by our computations are small compared to the 

experiments. Therefore the computational results show jet formation even lower Wein and Caout. 

 

 

 

 

 

Figure 2. Drop formation for dripping mode 

[(uout/uin) = 8.8, Rein(=2Rinuinρin/µin) = 0.2, Reout(=2Rinuoutρout/µout) = 0.94,  

Wein(=2Rinuin
2ρin/σ) = 0.002, Weout(=2Rinuout

2ρout/σ) = 0.124] 
 

 

 

 

Figure 3. Drop formation for jetting mode 

[(uout /uin) = 20.0, Rein = 0.2, Reout = 2.13, Wein = 0.002, Weout = 0.64] 
 



 

 

 

Figure 4. Drop radius versus the velocity of the continuous phase. [Rein = 0.2，Wein = 0.002] 

 

 
 

Figure 5. Diagram of the dripping to jetting transition as a function of Caout and Wein 
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