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Introduction 

The motivation of the present work arises from control problems in continuous stirred microbial bioreactors, often 
called chemostats. In many applications, the design conditions for the chemostat represent a locally asymptotically 
stable steady state but the stability region could be too small to allow proper operation in the presence of disturbances. 
Thus, the need for control arises in the sense of enlargement of the stability region of the design steady state in the 
presence of disturbances ([8]). Under these circumstances, achieving global stability of the bioreactor in the presence 
of disturbances will be best possible outcome from the design of a control system.  

The problem of designing of a feedback law that achieves robust global stabilization of a nonlinear system is closely 
related to the existence of a Robust Control Lyapunov Function. However, it may be a big challenge to derive a 
Control Lyapunov Function satisfying global properties for a given nonlinear system. In the present work, under 
appropriate hypotheses, we derive relaxed Lyapunov-like sufficient conditions for Uniform Robust Global 
Asymptotic Stability. The Lyapunov-like conditions will be “relaxed” in the sense that the Lyapunov differential 
inequality is not required to hold over the entire state space, but only over an appropriate absorbing set, having the 
property that every trajectory of the system enters the set in finite time.  

The theoretical results will be applied to a chemostat stabilization problem, where the dynamics is adequately 
represented by a two-state model involving the microbial biomass and the limiting organic substrate, with 
manipulated input the dilution rate. The growth rate of the microorganisms will be assumed follow Haldane kinetics, 
whereas the death rate of the microorganisms as well as the substrate consumption for cell maintenance will be 
accounted for assuming first-order kinetics. Moreover, the biomass balance will involve a time-varying uncertainty, 
accounting for the adjustment of the biomass to changes in the substrate levels. Applying the theoretical results on 
relaxed Lyapunov crireria, a robust globally stabilizing state feedback control law will be derived. Simulation results 
will also be used to illustrate the robustness properties of the derived control law.  

1. Motivation: Globally stabilizing control of a chemostat  
 
Continuous stirred microbial bioreactors, often called chemostats, cover a wide range of applications. The dynamics 
of the chemostat is often adequately represented by a simple dynamic model involving two state variables, the 
microbial biomass X  and the limiting organic substrate S  (see [13]).  For control purposes, the manipulated input is 
usually the dilution rate D. A commonly used (delay-free) mathematical model for microbial growth on a limiting 
substrate in a chemostat is of the form: 
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where iS  is the feed substrate concentration, )(Sμ  is the specific growth rate and 0>Y  is a biomass yield factor. 
Chemostat models with delays can be found in [4,14,15]. In most applications, Monod or Haldane or generalized 
Haldane models are used for )(Sμ . 
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The literature on control studies of chemostat models of the form (1.1) is extensive. In [3], feedback control of the 
chemostat by manipulating the dilution rate was studied for the promotion of coexistence. Other interesting control 
studies of the chemostat can be found in [1,6-10]. The stability and robustness of periodic solutions of the chemostat 
was studied in [11,12]. The problem of the stabilization of a given non-trivial steady state ),( ss SX  of the chemostat 

model (1.1) was considered in [9], where it was shown that the simple feedback law 
sX

XSD )(μ=  or 

equivalently ( )
( )

=
−i s

S XD
Y S S
μ is a globally stabilizing feedback. See also the recent work [8] for the study of the 

robustness properties of the resulting closed-loop system under this feedback law in the presence of constant or time-
varying errors in the inlet substrate concentration iS .  
 
    In this work we consider the robust global feedback stabilization problem for the more general uncertain chemostat 
model  
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In the above,  
 

• The term – bX in the biomass balance represents the death rate of the cells in the chemostat. The parameter 
0≥b  is the cell mortality rate. 

• The term – Xm  in the substrate balance accounts for the rate of substrate consumption for cell maintenance 
([2]) as well as the rate of release of substrate due to the death of the cells in the chemostat (which is 
proportional to bX ). The parameter m is either positive or assumes a small negative value. The parameter m 
is related to the presence of variable apparent yield coefficient, which has been studied recently in [16]. 

• The term ( S ,t )Δ  represents possible deviations of the specific growth rate of the biomass, primarily 
accounting for the adjustment of the biomass to changes in the substrate levels. It is assumed to be of the 
form { }1 2 0= − − −s s( S ,t ) d ( t ) S S d ( t ) max ,S SΔ  with 1d (t)∈ [0,a], 2d (t)∈ [0,a], 0≥a . Notice that at 
design steady state conditions ),0( is SS ∈ , the uncertainty ( S ,t )Δ  is assumed to vanish. See Figure 1 

below for a sketch of the shape of the uncertainty range as a function of sS . 
 

 
Figure 1: Indicative uncertainty range for the specific growth rate of the biomass, ( ) ( , )+ ΔS S tμ  
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Notice that model (1.2) becomes (1.1) if we set 0= = =a b m .  
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       It is also important to notice that even in the case of zero uncertainty ( 0=a ), zero mortality rate b and for 

positive values for the constant m , the application of the feedback law 
sX

XSD )(μ=  does not necessarily lead to 

global stability. For example, for the Haldane model  2
max( ) =
+ +S

I

S
S

SK S
K

μ
μ

  , it is easy to verify that for arbitrarily 

small positive values for the constant m , the resulting closed-loop system under 
sX

XSD )(μ=  and 0= =a b has 

two equilibrium points in the first quadrant [1]( , )ssS X  and [ 2]( , )ssS X , with [1] [ 2]0 < <s sS S . The equilibrium point 
[ 2]( , )ssS X , is locally asymptotically stable with region of attraction the set [1]( , , 0) :{ }> >sS X S S X . The stable 

manifold of the unstable equilibrium [1]( , )ssS X  is the straight line [1]= sS S  and if the initial condition for the 

substrate is less than [1]

sS  then the system is led to shut-down in finite time (i.e., there exists 0≥T  such that 
0)(lim =

−→
tS

Tt
). Therefore, the feedback law needs to be modified in order to be able to guarantee global asymptotic 

stability for the desired equilibrium point.  
 
This observation is illustrated by simulation in Figures 2 and 3.  Figure 2 depicts the response of system (1.1) under 

the feedback law 
sX

XSD )(μ=   for the following parameter values, design steady state and initial conditions: 
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It is observed that the controller is very effective in bringing the system to its design steady state. 
 
If, however, a term – Xm  is present in the substrate balance, with 10.1 /−= ⋅m d mg mg and all the other parameters 

remain the same, the control law 
sX

XSD )(μ=  completely fails to bring the system to its design steady state; instead, 

it leads the system to shut down in finite time, as shown in Figure 3. 
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Figure 2: Evolution of states for system (1.2) with 0=== mba  under the control law 

sX
XSD )(μ=  
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Figure 3: Evolution of states for system (1.2) with 0== ba , 10.1 /−= ⋅m d mg mg  

                                            under the control law 
sX

XSD )(μ=  

 
 
2. Theory: Relaxed Lyapunov criteria for robust global stabilization of nonlinear systems 
 
In this section, the main theoretical results of the present work are presented. We start with systems without 
manipulated input that are subject to disturbances d, and we review the notion of Uniform Robust Global Asymptotic 
Stability (URGAS). Consider a dynamical system of the form: 
 

Ddx

xdFx
n ∈ℜ∈

=

,

),(
                                                                               (2.1) 

 
We assume throughout this section that system (2.1) satisfies the following hypotheses: 
(H1) lD ℜ⊂ is closed and bounded. 
(H2)  The mapping nn xdFxdD ℜ∈→∋ℜ× ),(),(  is continuous. 

(H3)  The vector field ),( xdF is locally Lipschitz continuous with respect to nx ℜ∈ .  

    Hypothesis (H3) guarantees that for every D
n Mdx ×ℜ∈),( 0 , there exists a unique solution )(tx  of (2.1) with 

initial condition 0)0( xx =  corresponding to input DMd ∈ . (Here by DM  we denote the class of all measurable 

and locally essentially bounded mappings Dd →ℜ+: ).  
 
Definition 1 ([5]): Let ),;( 0 dxtx  denote the unique solution of (2.1) with initial condition nxx ℜ∈= 0)0(  
corresponding to input DMd ∈ . Assume that hypotheses (H1-3) hold, with 0)0,( =dF  for all Dd ∈ .  

We say that nℜ∈0  is Uniformly Robustly Globally Asymptotically Stable (URGAS) for (2.1) if the following 
properties hold: 

• for every 0>s , it holds that   
              { } +∞<∈≤≥ DMdsxtdxtx ,,0;),;(sup 00       (Uniform Robust Lagrange Stability) 

• for every 0>ε  there exists a ( ) 0: >= εδδ  such that: 
              { } εδ ≤∈≤≥ DMdxtdxtx ,,0;),;(sup 00       (Uniform Robust Lyapunov Stability) 

• for every 0>ε  and 0≥s , there exists a ( ) 0,: ≥= sεττ , such that: 
              { } ετ ≤∈≤≥ DMdsxtdxtx ,,;),;(sup 00    (Uniform Attractivity for bounded sets of initial states) 
 
     Next we present relaxed Lyapunov-like sufficient conditions for URGAS. The Lyapunov-like conditions of the 
following theorem are “relaxed” in the sense that the Lyapunov differential inequality is not required to hold over the 
entire state space, but only for states that belong to an appropriate set of the state space, such that every trajectory of 
the system enters the set in finite time. 
 



     5

Theorem 1: Consider system (2.1) under hypotheses (H1-3) with 0)0,( =dF  for all Dd ∈ and suppose that there 

exists a set nℜ⊆Ω  with Ω∈0 , functions );(1 +ℜΩ∈CV  being positive definite and radially unbounded, 

);(0 +ℜℜ∈ nCT , );(0 +ℜℜ∈ nCG , which satisfy the following properties: 
 
(P1) For every n

DMxd ℜ×∈),( 0 , there exists )](,0[),(ˆ 00 xTdxt ∈  such that the unique solution ),;( 0 dxtx  of 
(2.1) satisfies Ω∈),;( 0 dxtx  for all )),,(ˆ[ max0 tdxtt∈  and )(),;( 00 xGdxtx ≤  for all )],(ˆ,0[ 0 dxtt∈ , where 

),( 0maxmax dxtt =  is the maximal existence time of the solution, 
 
(P2) ( ) 0),()(sup <∇

∈
xdFxV

Dd
 for all Ω∈x , 0≠x . 

 
Then nℜ∈0  is URGAS for (2.1). 
 
Remark 1: For disturbance-free systems, a set nℜ⊆Ω that satisfies condition (P1) of Theorem 1 is called an 
absorbing set.  
 
The following lemma provides sufficient conditions for the reachability condition (P1) of Theorem 1.  
 
Lemma 1: Consider system (2.1) under hypotheses (H1-3) and suppose that there exist locally Lipschitz functions 

ℜ→ℜnh :  with 0)0( <h , ℜ→ℜna :  being bounded from above with 0)0( =a , +ℜ→ℜnW :  being radially 

unbounded, a continuous function ),0(: +∞→ℜ+δ  and constants 0≥K , 0>ε ,  such that 

{ } ∅≠<<ℜ∈ ε)(0: xhx n  and  

0),()(sup ≤∇
∈

xdFxh
Dd

, for almost all nx ℜ∈  with bxh << )(0                                                                               (2.2a) 

( ) ))((),()()(sup xhxdFxaxh
Dd

δ−≤∇−∇
∈

, for almost all nx ℜ∈  with 0)( >xh                                                         (2.2b) 

)(),()(sup xKWxdFxW
Dd

≤∇
∈

, for almost all nx ℜ∈  with 0)( >xh                                                                          (2.3) 

Then for every ),0(ˆ b∈ε  there exist functions );(0 +ℜℜ∈ nCT , );(0 +ℜℜ∈ nCG  such that property (P1) of 

Theorem 1 holds with { }ε̂)(:: ≤ℜ∈=Ω xhx n .  
 
 
We next consider a nonlinear dynamic system with manipulated input u, of the form: 
 

UuDdx

uxdgxdfx
n ∈∈ℜ∈

+=

,,

),(),(
                                                                          (2.4) 

 
where lD ℜ⊂  is a closed and bounded set, mU ℜ⊆  a non-empty convex set with U∈0 , nnDf ℜ→ℜ×: , 

mnnDg ×ℜ→ℜ×:  are continuous mappings with 0)0,( =df  for all Dd ∈ and the vector field ( , ) ( , )+f d x g d x u  

is locally Lipschitz continuous with respect to nx ℜ∈ . The problem is to construct a continuous state feedback law 
)(xku =  with Uk n →ℜ:  and 0)0()0,( =kdg  for all Dd ∈ , which achieves robust global stabilization of nℜ∈0  

for (2.4), i.e., nℜ∈0  is uniformly robustly globally asymptotically stable for the closed-loop system 
)(),(),( xkxdgxdfx += .  

 
    In view of the foregoing analysis for systems of the form (2.1), we can develop “relaxed” Lyapunov-like conditions 
for the existence of a locally Lipschitz, globally stabilizing state feedback law )(xku =  for system (2.4): 
Instead of requesting the existence of a Robust Control Lyapunov Function (RCLF), i.e., the existence of a 
continuously differentiable, positive definite and radially unbounded function +ℜ→ℜnV :  with  
                     ( ) 0),(),()(supinf <+∇

∈∈
uxdgxdfxV

DdUu
, for all 0≠x , nx ℜ∈                                       

a “relaxed” condition 
                                               ( ) 0),(),()(supinf <+∇

∈∈
uxdgxdfxV

DdUu
, for all 0≠x , Ω∈x                                    
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with nℜ⊆Ω , can be used to design a globally stabilizing state feedback. In particular, a continuous state feedback 
law Uk n →ℜ:  with 0)0()0,( =kdg  for all Dd ∈ , which guarantees  
 
                                              ( ) 0)(),(),()(sup <+∇

∈
xkxdgxdfxV

Dd
, for all 0≠x , Ω∈x                                    

with nℜ⊆Ω  such that every solution of (2.4) with )(xku =  enters nℜ⊆Ω  in finite time, achieves robust global 

stabilization of nℜ∈0  for (2.4). 
 
Using Theorem 1 as well as the sufficient conditions for the reachability condition (P1) from Lemma 1, we can show 
the following: 
 
Theorem 2: Consider system (2.4) and suppose that there exist continuously differentiable functions ℜ→ℜnh :  
with 0)0( <h , +ℜ→ℜnW :  being radially unbounded, +ℜ→ℜnV :  being positive definite and radially 

unbounded, a continuous non-increasing function ),0(: +∞→ℜ+δ  and constants 0≥K , 0>ε   such that 

{ } ∅≠≥ℜ∈ ε)(: xhx n  and the following properties hold: 

(R1) For every nx ℜ∈  with 0)( ≥xh  there exists Uu∈  with 
                                                         ( ) ))((),(),()(sup xhuxdgxdfxh

Dd
δ−≤+∇

∈
                                                        (2.5) 

                                                          ( ) )(),(),()(sup xKWuxdgxdfxW
Dd

≤+∇
∈

                                                       (2.6) 

(R2) For every 0≠x  with ε≤)(xh  there exists Uu∈  with  
                                                            ( ) 0),(),()(sup <+∇

∈
uxdgxdfxV

Dd
                                                                  (2.7) 

(R3) For every nx ℜ∈  with ],0[)( ε∈xh  there exists Uu∈  satisfying (2.5), (2.6) and (2.7).  

(R4) There exists a neighbourhood N  of nℜ∈0  and a locally Lipschitz mapping Uk →N:
~

 with 0)0(
~

=k  such 

that ( ) 0)(
~

),(),()(sup <+∇
∈

xkxdgxdfxV
Dd

 for all N∈x , 0≠x . 

Then there exists a locally Lipschitz mapping Uk n →ℜ:  with 0)0( =k  such that  nℜ∈0  is URGAS for the closed-
loop system (2.4) with )(xku = . 
 
 
The theoretical results developed in this section can have the following types of applications: 

i) in many cases, RCLFs are not available, while “relaxed” RCLFs can be found, leading to robust globally 
stabilizing controllers.while RCLFs are not available. 

ii) even when a RCLF is known, the use of  “relaxed” RCLFs can lead to alternative feedback designs that 
may have advantages over the ones from RCLF. 

 
In the next section, the results will be applied to the problem of robust feedback stabilization of the chemostat. 
 
 
3. Application to chemostat control 
 
 
Consider again the general chemostat model (1.2) and assume that the specific growth rate function 

],0[: maxμμ →ℜ  is a locally Lipschitz function with 0)( =Sμ  for all 0≤S  and 0)( >Sμ  for all 0>S . 
Additionally, we make the following assumptions: 
 

(S1) There exists an equilibrium point ),0(),0(),( iss SSX ×+∞∈  with bDS ss +=)(μ  and 
( )−

=
+ +

s s
s

s

iD Y S S
X

D b Ym
 

        for a certain value of the dilution rate 0>sD . 
Assumption is satisfied for Monod, Haldane and generalized Haldane kinetics, as long as the value of the dilution rate 

sD is not too high (smaller than the washout dilution rate). 
 

(S2) There exists ),0( sSS ∈+  and 0>p  such that 
1

( ) + ≥S m p
Y
μ and pbS 2)( ≥−μ  for all ],[ iSSS +∈ . 
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Assumption is satisfied for Monod, Haldane and generalized Haldane kinetics, as long as 

( ) ( )min ( ), ( ) max ,> −s iS S b Ymμ μ , in which case, any ( )max ,+ > −S b Ym  satisfies it. 
 
The goal is the robust global stabilization of the non-trivial equilibrium point ),0(),0(),( iss SSX ×+∞∈  with 

bDS ss +=)(μ  and 
( )−

=
+ +

s s
s

s

iD Y S S
X

D b Ym
involved in hypotheses (S1-2) for system (1.2).  

As a first step, we apply the change of coordinates: 
 

)exp(
)exp(

1

1

xc
xS

S i

+
=  ; )exp( 2xG

SS
X

i
=

−
                                                     (3.1) 

 
and the input transformation: 
 

uDD s +=                                                                                (3.2) 

where 1: −=
s

i

S
S

c  and :
+ +

= s

s

D Y
G

D b Ym
.  

 

The above coordinate change maps the strip 2{( , ) : 0, 0 }∈ℜ > < < iX S X S S onto 2ℜ . 
 
Under the above transformations, the uncertain system (1.2) is transformed to the following: 
 

( )

( )

1 1 1 2

2 1 1 1 2 1 1 2
1 1

2 2
1 2 1 2

1
exp( ) 1 ( ) exp( )

1
( ) exp( ) 1 max 0,1 exp( ) ( ) exp( )

exp( ) exp( )

( , ) , : [ , ) , ( , ) [0, ]

= − + + − +

= + − − − − − +
+ +

= ∈ℜ ∈ = − +∞ = ∈

⎛ ⎛ ⎞ ⎞
⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

s

s s

s

x c x D u x m G x
Y

cS cS
x x d x d x b x m G x

c x c x Y

x x x u U D d d d a

μ

μ μ   (3.3) 

 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
)exp(
)exp(

:)(~
1

1
1 xc

xS
x iμμ . Notice that 0=x  is an equilibrium point for the above system for 0≡u . Therefore, 

we seek for a locally Lipschitz feedback law ℜ→ℜ2:k  with 0)0( =k  so that the origin is uniformly robustly 
globally asymptotically stable for the closed-loop system under )(xku =  in the sense described in the previous 
section.    
 
Insights for the solution of the feedback stabilization problem for (3.3) may be obtained by considering the 
transformation of the nominal system (1.1) (i.e. for 0= = =a b m ): 
 

( )( )

),[:,),(

)exp()(~)(~
)exp()(~1)exp(

2
21

2112

2111

+∞−=∈ℜ∈=

−=
−++−=

s

s

DUuxxx

xxxx
xxuDxcx

μμ
μ

                                                         (3.4) 

 
For the control system (3.4), families of Control Lyapunov Functions (CLF) are known (see [8]). Let +ℜ→ℜ:γ , 

+ℜ→ℜ:β  be non-negative, continuously differentiable functions with 0)0()0( == βγ  and such that  
 

0)( >′ xxγ , ( ) 0x xβ ′ > , for all 0≠x                                                                (3.5a) 
 

if ±∞→x  then +∞→)(xγ  and +∞→)(xβ                                                   (3.5b) 
 
Then the family of functions: 
 

                )()()( 21 xxxV βγ +=                                                                         (3.6) 
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are radially unbounded, positive definite and continuously differentiable, and constitute CLFs for system (3.4). The 
knowledge of the above family of CLFs allows us to obtain a family of stabilizing feedback laws for (3.4). The reader 
may verify that the following family of feedback laws: 
 

),()()exp()(~:)( 21121 xxqxxxDxk s ++−= ϕμ                                                       (3.7) 
  
where +ℜ→ℜ:ϕ  is a locally Lipschitz, non-negative function with 1)0( =ϕ , 1)( <xϕ  for 0>x  and 1)( >xϕ  for 

0<x , +ℜ→ℜ2:q  is a locally Lipschitz, non-negative function with 0),( 21 =xxq  for 01 ≥x , is a family of 
globally stabilizing feedback laws for (3.4).  
 
Back-transforming (3.7) to the original variables, gives the following family of globally stabilizing control laws for 
the nominal system (1.1): 
 

                                        ( )
( ) ( , )

( )
= +

−i

S X
D S q S X

Y S S

μ
ϕ                                                                 (3.8) 

where  

a) : +ℜ → ℜϕ  is a locally Lipschitz function with  ( ) 0≥Sϕ  for all 0 < < iS S , 

                               ( ) 1>Sϕ  for 0 < < sS S ,  ( ) 1=sSϕ , ( ) 1<Sϕ  for > sS S .  

b) : + + +ℜ × ℜ → ℜq  is a locally Lipschitz, non-negative function with ( , ) 0≡q S X  for > sS S , 
 

 Notice hat the special choices  ( )
−

=
−

i

i s

S S
S

S S
ϕ  and ( , ) 0=q S X  lead to ( )

( )
=

−i s

S XD
Y S S
μ , which is the feedback law 

in [9] (see also [8] and references therein). 
  
The method of CLF can be extended to the uncertain system (1.2) or (3.4), leading to globally stabilizing controllers. 
However, the results are extremely complicated and are omitted here for brevity. 
 
The method of “relaxed” Control Lyapunov Functions proposed in the previous section can now be applied to the 
problem in hand and give rise to simple feedback controllers. Details are omitted, but the main point is that the 

Lyapunov differential inequality is imposed over the set { }∗≥ℜ∈=Ω 11
2

21 :),(: xxxx , where  1

1

1
ln∗

+

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

−

−

i

s

i
x

S
S
S
S

, 

instead of the entire 2ℜ .                     
 

Theorem 3: Let : +ℜ → ℜψ  be a locally Lipschitz non-increasing function with ( ) 0=xψ  for all 0≥x  and 

( ) 0>xψ  for all 0<x  and let ),0(: 2 +∞→ℜL  be a locally Lipschitz function with { } 0:)(inf 2 >ℜ∈xxL . Under 

hypotheses (S1-2), for every 0≥a , 20 ℜ∈  is URGAS for the closed-loop system (3.3) with 
  

                                      1 2 1 1 2 1
1

max( 0 , ( ) ) exp( ) ( , ) ( )= − + + − +su D x m G x x L x x x
Y
μ ψ                                  (3.9) 

 
Transforming the above result in terms of the original variables, we obtain: 
 

Theorem 3΄: Let : + +ℜ → ℜψ  be a locally Lipschitz non-increasing function with ( ) 0=Sψ  for all ≥ sS S  and 

( ) 0>Sψ  for all for 0 < < sS S  and let : (0, )+ +ℜ ×ℜ → +∞L  be a locally Lipschitz function with 

{ }inf ( , ) : , 0 0+∈ℜ < < >iL X S X S S . For every 0≥a , the origin  is URGAS for the closed-loop system (1.2) 

under the feedback law                        

                                           
1

max 0, ( ) ( , ) ( )= ⋅ ⋅ + + ⋅
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

s

i s

S X
D S m L S X S

S S S Y
μ ψ                                             (3.10)                      
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Notice that the special choices 1 2( , ) 0≡ >L x x L and ( )1 1( ) max 0,1 exp( )= −x xψ , or, in terms of the original 

variables,  ( , ) 0≡ >L S X L  and ( ) max 0 ,1= −
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

i

i s

S S
S

S S S
ψ , lead to the following more concrete form of 

feedback control law 

                                    
1

max 0, ( ) max 0 ,1= ⋅ ⋅ + + −
− −

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

s i

i s i s

S SX S
D S m L

S S S Y S S S
μ                                 (3.11) 

 
Finally, it is important to point out certain possible simplifications of the derived controller:  

• for 0=m , control law (3.10) simplifies to 
( )

( , ) ( )
( )

= ⋅ + ⋅
−

s

i s

SS X
D L S X S

Y S S S

μ
ψ , which is of the form (3.8). 

• for 0>m , control law (3.10) simplifies to 
( )( )

( , ) ( )
( )

+
= ⋅ + ⋅

−
s

i s

SS Ym X
D L S X S

Y S S S

μ
ψ , 

                                                         or equivalently 
( )

( , ) ( )
( ) ( )

= ⋅ + ⋅
⋅ −

s

i s

SS X
D L S X S

Y S S S S

μ
ψ ,  where 

                                                        ( )Y S is an  apparent variable yield factor defined by 
1 1

( ) ( )
= +

m

Y S Y Sμ
. 

 
The performance of the derived controller is illustrated through simulations in Figures 4-6.  Figures 4 and 5 depict the 
response of system (1.2) under the feedback law (3.11) and for the following parameter values and design steady state 
conditions: 

                   
1

max

1

110000 , 20 , 0.5 , 100 , 4000

0, 0, 0.1 / , 506.72 , 468.46

S I

s s

iS mg l mg mg d K mg l K mg l
Y

a b m d mg mg S mg l X mg l

μ −

−

= = = = =

= = = ⋅ = =
 

In Figure 4, the system’s initial conditions were (0) 10 / , (0) 10 /X mg l S mg l= = , whereas in Figure 5, 
(0) 1000 / , (0) 1000 /= =X mg l S mg l . Note that the initial conditions were chosen to be very far from the design 

steady state conditions in order to test the capabilities of the proposed controller. It is observed that, despite the 
adverse conditions, the controller is very effective in bringing the system to its design steady state. 
In Figure 6, parameter values, design steady state and initial conditions are as in Figure 5, except that an oscillating 
perturbation in the biomass growth rate is assumed to be present in system (1.2). Despite this persistent perturbation, 
the controller is very effective in bringing the system to its design steady state, even though the time response is not 
as fast.  
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Figure 4: Evolution of states for system (1.2) with 0== ba , 10.1 /−= ⋅m d mg mg  under the control law (3.11) 

with 1=L and initial conditions (0) 10 / , (0) 10 /= =X mg l S mg l  
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Figure 5: Evolution of states for system (1.2) with 0== ba , 10.1 /−= ⋅m d mg mg  under the control law (3.11) 

with 1=L and initial conditions (0) 1000 / , (0) 1000 /= =X mg l S mg l  
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Figure 6: Evolution of states for system (1.2) with 19.0=a , )sin()(1 ttd = , 0)(2 ≡td , 0=b , 10.1 /−= ⋅m d mg mg    

    under the control law (3.11) with 1=L and initial conditions (0) 1000 / , (0) 1000 /= =X mg l S mg l  
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