
  

  

Abstract — Controllers that directly incorporate an 

embedded first principles dynamic flowsheet model have been 

applied to a range of transition metal and free radical 

polymerization kinetics industrial processes. These controllers 

handle grade runs, transitions and constraint pushing. This 

paper discusses lessons learned from these applications, with 

reference to industrial examples, in the contexts of (i) scoping 

the flowsheet model; (ii) offline parameter estimation to match 

the model to process steady state; and iii) online state estimation 

for continuous and discontinuous process measurements. An 

emphasis is placed on (ii). The discussion in this paper is of a 

general nature, although the experiences were gained with 

specific tools not in the public domain. 

I. INTRODUCTION 

ABLE 1 lists some generic challenges inherent to 

polymer process control. 

TABLE 1: POLYMER PROCESS CONTROL CHALLENGES 

Concept Notes 

Core challenge Complex catalytic reaction. 

No in-situ 

quality 

measurements 

Quality properties such as melt index, density, % 

solubles, etc measured outside the reactor (often in 

the laboratory) with some time delay. 

Process 

capability 

issues 

Quality properties set tight relative to process 

sampling, laboratory measurement and consistent 

process operation capabilities given typical measured 

and unmeasured disturbances. 

Transition 

control 

Implementation of significant changes to property 

targets during which other operating conditions such 

as production rate may also be changed significantly 

to maximize process unit profitability. 

Constraint 

pushing  and 

turndown ratio  

Controlling to unit constraints and/or through 60%+ 

turndown as apparent dynamics and gains change 

with different properties and/or production rate. 

Adapting to 

process change 

For example, handling new catalysts or quality 

properties. 

Xie et al [1] were among the first to discuss nonlinear 

reactor modeling for gas phase polymerization processes 

with emphasis on control application. Subsequently, 

controllers that directly incorporate an embedded first 

principles dynamic flowsheet model have been applied for 

handling grade runs, transitions and constraint pushing to a 

range of transition metal and free radical polymerization 

kinetics industrial polymer processes. This paper focuses on 

issues associated with the development and implementation 

of the embedded dynamic flowsheet model. 
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II. CONCEPT OF PROCESS MODEL DESCRIPTION 

By definition models both simplify a real system and also 

synthesize state-of-the-art knowledge. The bridging of these 

potentially contradictory definitions is the model description, 

the specific set of questions about the real world for which 

the model is required to provide an answer. Through a 

review of the model description, the model detail that can be 

sacrificed without reduction in relevant predictive capability 

can be identified. The process model description is 

influenced through the use of established tools in the 

problem realm and by applying generic model-building 

concepts during use of these tools.  

Established problem-solving approaches within the 

process industries are the concepts of flowsheeting for 

modeling and online state estimation for control model 

update … and the evolution of tools that apply these 

concepts. For example, flowsheeting has evolved to support 

the generation of dynamic models through entry of actual 

equipment volumes and geometry. Also within the context of 

flowsheeting for polymer processes the framework has 

evolved to allow the engineer configuring the application to: 

� Select the reactions to use from a library of reaction 

schemes (free radical or transition metal kinetics). 

� Predict end-use properties based on the most common 

correlations proposed and validated in the open 

technical literature. 

Online state estimation has evolved from constant or 

integrating output disturbance value through Extended 

Kalman Filter (EKF) to methodologies that have a more direct 

connection with a flowsheet model – such as Implicit 

Dynamic Feedback (IDF) and Moving Horizon Estimation 

(MHE) – see Hedengren et al [2]. 

Generic model-building concepts to be applied in 

conjunction with these established tools include: 

� Clarify model objectives 

� Start small 

� Verify (test/debug) and validate (does the model 

adequately mimic reality?) 

� Improve incrementally (prioritizing additions in terms 

of the greatest anticipated improvement in the model) 

� Refactor frequently (backtrack and/or simplify) 

III. DEFINING THE PROCESS MODEL DESCRIPTION FOR THE 

APPLICATION CONTEXT 

For a process control application, the embedded flowsheet 

model must be both robust (provide a usable solution) and 
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solve relatively quickly. Within the context of these generic 

constraints, the core requirement is to predict the effect of 

the manipulated (MV) and feed forward (FF) variables in the 

controller on the controlled variables (CV). This definition 

implies the exact objective is a function of controller design. 

However, for the general range of polymer production 

processes and reaction mechanisms, we can practically think 

of the CVs as falling into three groups: 

� Polymer properties  

� Polymer production rate  

� Polymer production rate constraints  

Real-time process values are typically available (measured 

directly or inferred through relatively simple calculation of 

direct measurements) for the latter two groups of CVs. 

Although this blurs defining the process model description, 

continuous state estimation algorithms can play a role in the 

overall prediction capability of the model for these CV 

groups. In actual practice, this becomes iterative in the sense 

of applying the generic model-building concepts of “Start 

Small”, “Validate” and “Improve Incrementally” until a 

model that is judged satisfactory for control objectives is 

obtained – section VIII reviews some selected examples.  

However, the set of CVs in the first group are not typically 

continuously measured in real time and as such cannot be 

updated by continuous state estimation. As indicated in 

Table 1, these CVs are also the CVs associated with process 

capability issues i.e. constraints on these CVs are tight given 

typical measured and unmeasured disturbances. As such, 

prediction capability similar to the measurement capability is 

sought for these CVs – and this becomes part of the process 

model description. Measurement capability can be viewed 

from the context of examining the cumulative effect of 

sampling issues, sample pre-treatment variation, 

measurement system repeatability, etc. on the measurement 

variability. More practically, measurement capability can be 

looked at from the context of actual variability when the 

process is nominally steady. From experience, this is 

typically less than 5% (in terms of the actual measurement 

for properties such as polymer melt index or across the range 

of measurement for properties such as polymer density). As 

well as such base prediction capability, the prediction “error” 

should show no significant bias across the range of operating 

conditions e.g. not biased in terms of poor prediction for one 

product type, or when operating at high production rates, etc. 

IV. IMPLICATION OF PROCESS MODEL DESCRIPTION 

As implied earlier, the basis for prediction of polymer 

properties within a flowsheet model is as outputs of the 

“reactor” unit operation. Flowsheeting packages usually 

provide a continuous stirred tank reactor (CSTR) and, if 

appropriate, combinations of these CSTR are used to 

represent the reality. For example, a tubular reactor can be 

represented as a set of CSTR in series.  

Quality properties of interest are correlated as functions of 

more fundamental properties such as polymer molecular 

weight distribution. These more fundamental properties are 

predicted subsequent to the solution of polymer kinetic 

expressions. The general rate expression is of the form: 

BAckcr γ=  

where: 

CA is the monomer, modifier, solvent, etc. 

CB is the live polymer site or radical concentration 

γ is the reaction exponent 

k is the  rate constant and is of the form: 
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where: 

P is pressure 

T is temperature 

R is the gas constant 

kj is the rate constant for reaction j 

k0j is the frequency factor for reaction j 

EAj is the activation energy for reaction j 

VAj is the activation volume for reaction j 

For transition metal kinetics such rate expressions are 

applied to the following reaction classes: 

� Site activation – monomer, hydrogen, cocatalyst, 

electron-donor, spontaneous, etc. 

� Initiation – vacant active site to monomer with active 

site 

� Propagation – monomer addition 

� Chain transfer – monomer addition terminated (by 

monomer, hydrogen, cocatalyst, electon donor, 

spontaneous, etc.) and new vacant active site created. 

� Site transformation – conversion of active site types 

by monomer, hydrogen, cocatalyst, electron donor, 

spontaneous, etc. 

� Site deactivation – monomer,  hydrogen, cocatalyst, 

electron donor, spontaneous, etc 

For free radical kinetics such rate expressions are applied 

to the following reaction classes: 

� Initiator decomposition 

� Propagation – monomer addition 

� Chain transfer – monomer, modifier, polymer 

� Chain termination – combination, disproportionation 

� Beta scission 

� Backbiting 

The relative rates of the different reactions determine the 

model predictions. For example, the relative rates of chain 

transfer and propagation reactions determine the length of 

the polymer chain. In turn, subsequent to transformation 

through the method of moments [3] to predict polymer 

molecular weight distribution, this is typically the primary 

correlating input for melt index prediction. 

As each reaction class applies to a number of explicitly 

defined reactions, the implication of the process model 

description is that parameter determination approaches are 



  

required for the kinetic and additional correlating 

parameters. For multiple catalyst site types – maybe also 

multiple monomer systems – the number of different relevant 

parameters in the model may approach 100. Irrespective of 

the operation of the polymer process, there is insufficient 

information in the available process data to enable all these 

parameters to be treated as independent. As such the process 

of parameter determination requires application of 

engineering judgment in the context of the available body of 

knowledge in the open literature. A core objective of this 

paper is to provide an overview of the application of such 

knowledge for some specific examples. 

V. PREDICTING QUALITY PROPERTIES FOR UNIPOLTM
 

POLYETHYLENE (PE) PROCESS 

Gas phase reactors are often discussed in the polymers 

technical literature. An example is UNIPOL
TM

 technology, 

licensed through Univation – a process description is given 

in references [4] and [5] (interactive format). Figure 1 shows 

the main process equipment. 

FIGURE 1:  PROCESS FLOW DIAGRAM 

 

Different product types (grades) are produced by selecting 

reaction conditions, comonomers and (transition metal) 

catalyst system. Each grade represents some balance in 

properties for different end uses. Grade specifications are 

typically quoted in terms of melt index and density as 

defined by ASTM measuring standards [6]. 

Steps involved in “identifying” the model are listed in 

Table 2 (next page). In practice, simultaneous manipulation 

of parameters that involves an obvious but difficult to define 

trade-off occurs only in step 8 (chain transfer to monomer as 

compared to chain transfer to hydrogen). In particular for 

such trade-off – but of general use especially for the latter 

steps in Table 2 – a multiple data-set reconciliation problem 

is auto-configured. The objective function is specified as: 
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where: 

 yn   is the number of measured variables 

 pn   is the number of parameter variables 

 
y

  is the model predicted variable values 

 
ymeas

 is the measured values 

 
y scale

 is the measurement scaling factor values 

 w
y

  is the measurement weights 

 
p

  is the model parameter variable values 

 
p start

 is the initial model parameter variable values 

 
p scale

 is the parameter scaling factor values 

 w
p

  is the user supplied parameter weights 

The weighting factors for the measured values and 

parameters in this objective function are defined by the user. 

Normally the w
p
 weights are zeroed out, but when non-zero 

they can help the regularization of the problem where weak 

observability may result in ill-conditioning (or solution non-

uniqueness). This objective function is an L2-norm that 

penalizes “outliers”. Some alternate objective function 

definitions have been utilized. An example is the automatic 

zeroing out of objective function contributions for 

predictions that fall within “tolerance” of the measurement: 

however from a mathematical perspective this is a more 

complicated implementation (non-smooth objective function 

changes for variation of parameters in certain ranges).  

Generally, a valid model is not obtained just by matching 

process data. The use of the tool has to be “engineering 

smart”. Engineering knowledge of the process gains are 

often incorporated into the estimation process – either 

directly through constraining the gains or indirectly by gain 

analysis – combined with parameter limits and data set 

adjustments. Also, unmeasured disturbances present in the 

process data can result in poor model sensitivities even 

though the model matches the process data quite well. If the 

structure and presence of unmeasured disturbances are 

known it can be appropriate to include simultaneous 

disturbance estimation in the parameter estimation problem 

through model specification changes to address this issue. 

Typically the input multiple data-sets are recipes – typical 

operating data covering different grades (maybe production 

rates) – adjusted to be consistent with recent operating data. 

The change in operating conditions necessary to implement 

transition from grade to grade is of more importance than 

absolute values. Some of the key inputs for this example are 

cycle gas composition and reactor temperature. 

An approach and tools to develop a kinetic model focused 

on prediction of polymer properties have been described. 

How good are such kinetic models? In our experience 

predictions for 70-80% of consistent data-sets are within the 

5% criterion defined above; the remaining 20-30% are 

within 10%. Why not all predictions within the 5% criterion? 



  

 

TABLE 2: STEPS TO DETERMINE KINETIC PARAMETERS FOR UNIPOLTM PE PROCESS 

Step Activity Observations Outcomes 

1 Literature search: 

tabulate reaction 

schemes and 

associated kinetic 

parameters. 

Success reported based on modeling fluidized bed as single 

CSTR. 

Polydispersity not a typical input for correlations to predict 

bulk melt index and polymer density. 

Moderate, relatively constant pressure. 

Fluidized bed modeled as CSTR. 

 

Only a single catalyst site type is considered (as a 

consequence, also no site transformation reactions).  

Activation volume kinetic parameters zeroed out. 

2 General process 

observations 

Single reactor. 

Site activation and initiation are "fast" (after adjusting 

catalyst flow to bed, the effect is seen in a few minutes). 

Deactivation kinetics are zeroed out. 

Site activation and initiation reactions are made dependent 

on reactants always present in the model. 

Kinetic parameters for these reactions set to values that 

impart small sensitivity to production rate (made "fast"). 

3 From literature 

search, identify 

base activation 

energies. 

Differences in activation energies (not absolute values) are 

important for predicting sensitivity of polymer properties 

to reactor temperature.  

For polymer density, differences for propagation of 

comonomer as compared to ethylene are important.  

For melt index, differences between chain transfer and 

propagation reactions are important.  

Rough check is made to confirm that the predicted 

sensitivities of polymer properties to reactor temperature 

obtained with the selected activation energies are consistent 

with experience/observation.  

4 Identify base 

propagation 

frequency factors 

Match the general polymer production rate versus catalyst 

usage data for the process. 

Initially the propagation frequency factors for the different 

reactions are all set equal. 

5 Determine polymer 

density correlation 

Several density correlation forms (usually relatively 

simple) available in the literature; primary correlated 

variable is percent comonomer incorporated. 

Some approximate data across operating range are 

available e.g. comonomer wt% incorporation is known 

from historical plant performance. 

Several forms are fitted – the form and parameters with best 

fit and extrapolation relationship are selected.  

Note: willing to accept different correlation parameters for 

different comonomers. 

6 Identify comonomer 

propagation kinetic 

parameters. 

Recipes for different grades are input data. 

For fluidized bed reactor the recipes typically include cycle 

gas composition ratios, e.g. comonomer/ethylene ratio. 

Frequency factors and reaction order exponents are set 

equal for reactions with the same monomer with active 

reaction site in the polymer chain – to reduce the number 

of different parameters. 

The propagation frequency factor for ethylene is held and the 

propagation frequency factors and (possibly) reaction order 

exponents for comonomer(s) are adjusted to improve the 

polymer density prediction. 

A check is made to determine if errors of the fit for polymer 

density are correlated with reactor temperature: if this is the 

case the activation energies for comonomer propagation are 

adjusted to eliminate this bias. 

7 Select melt index 

correlation function 

In the literature, melt index is normally correlated as a 

function of polymer weight average molecular weight. 

 

A few laboratory data may be available. 

A correlation form and parameters are selected from the 

literature (form and parameter values independent of 

comonomer type). 

Parameters are fitted if sufficient lab data available. 

8 Identify chain 

transfer kinetic 

parameters 

Recipes for different grades are input data. 

For fluidized bed reactor the recipes typically include cycle 

gas composition ratios, e.g. comonomer/ethylene, 

hydrogen/ethylene ratios. 

Frequency factors and reaction order exponents are set 

equal for reactions with the same monomer with active 

reaction site in the polymer chain – to reduce the number 

of different parameters. 

The propagation kinetic parameters are held and the chain 

transfer to hydrogen and chain transfer to monomer kinetics 

are adjusted. 

A check is made to determine if errors of the fit for polymer 

melt index are correlated with reactor temperature: if this is 

the case the activation energies for comonomer propagation 

are adjusted to eliminate this bias. 

9 Check overall 

quality of model 

prediction and 

iterate to earlier step 

Most common to iterate steps 4, 7 and 8. Require fit of polymer melt index within 5% of target values 

and fit of polymer density to be within 5% of range of 

polymer density with no identified biases that are functions 

of operating conditions. 

The model is an approximation: even though there are 

many available parameters, prediction limitations still exist. 

Are prediction discrepancies greater than 5% just accepted? 

The answer is “it depends”. Generally, if the predictions that 

are out by more than 5% also bias the model predictive 

capability, then additional modeling and parameter fitting of 

a different form will be implemented. Sometimes the form 

has a known process basis that is not covered by the detail of 

the model as generally described above. For example 

polymer density may be known to be a (weak) function of 

polymer melt index - in which case this relationship is added 

and correlating parameters identified. 

Similarly, several mechanisms not initially in the model 

may be proposed for effects on production rate. Again, the 

model can be enhanced – although engineering judgment is 

needed regarding accepting the implementation costs, as 

online state estimation can also be utilized to “improve” the 

model prediction. 

Otherwise, a purely statistical model can be added and 

parameterized that addresses the model prediction 

“deficiencies”. In our experience, this is not typically 

required but is better than catching model prediction 

deficiencies on feedback of irregular and delayed plant data.  

Model-fitting as described above is abstracted from the 



  

actual process. If sufficient relevant historical data are 

available these data can be utilized relatively easily to 

provide a “feel-good” factor that connects with the actual 

process – the kinetic parameter optimization tool can be used 

to generate input data for identifying back-test success rate 

on predicting historical transitions. (As a steady state model 

is being used, some subjectivity is involved in identifying the 

pre- and post-transition “steady states”.) Although it is a 

function of unmeasured disturbances (usually particularly 

associated with the catalyst) a success rate of higher than 

75% is generally experienced.  

What is the engineering effort involved for this model-

fitting? On the basis of a good understanding of the 

engineering concepts and tools, the effort related to the 

process described herein is akin to model identification effort 

for traditional linear multivariable controllers. Generally, the 

major activity involves collating historical plant operation to 

provide the objectives of the model-fitting and ensure 

“coverage” is consistent with actual plant operations. 

VI. PREDICTING QUALITY PROPERTIES FOR SINGLE REACTOR 

FREE RADICAL POLYMER PROCESSES 

Although many of the reaction classes for free radical 

reactions have a parallel to the reaction classes for transition 

metals, there are some differences that impact the detail of 

the procedure for determining kinetic parameter values. For 

example, initiator decomposition kinetic parameters may be 

available – from open literature, or the manufacturer. As 

another example, usually deactivation reactions need to be 

active to enable reasonable prediction of production rate. 

Understanding the predictive effect of the different 

termination reactions (disproportionation and combination) 

may be difficult. One approach is to initially fix the ratio of 

these reaction rates at some literature value; then complete 

the overall model fit (in much the same way as reviewed in 

Table 2). Then the ratio is varied; the model re-fitted and the 

effects on the model prediction capability studied (i.e. an 

overall iterative step). As before, updated values for kinetic 

parameters are only accepted after analysis deems the steady 

state gain matrix remains reasonable.    

VII. PREDICTING QUALITY PROPERTIES FOR MULTIPLE 

REACTOR POLYMER PROCESSES 

Multiple reactor polymer processes bring challenges to 

controller design. However, a model-fitting advantage exists 

as there are effectively additional measurement data due to 

inference of production rates from each reactor. These data 

can be used to determine some of the kinetic parameters for 

reactions previously set primarily from engineering 

assumptions. For transition metal kinetics, this includes the 

deactivation and site activation or initiation reactions. 

VIII. EXPANDING THE PROCESS MODEL DESCRIPTION 

Sections IV to VII focused on achieving the requirements 

for prediction of quality properties CVs. However, section III 

also listed the CV “groups” of polymer production rate and 

production rate constraints. Reasonable prediction for 

polymer production rate effectively falls out of the approach 

discussed for kinetic parameter fitting. In the online 

environment, model-based state estimation such as IDF or 

MHE can use the instantaneous production rate, as 

determined by energy and/or material balance, to update an 

input disturbance of catalyst activity. This is particularly 

effective for multiple reactors in series. The CV group 

remaining for discussion is therefore polymer production rate 

constraints. In reality each CV within this group has unique 

aspects for a particular application. Some examples for a 

UNIPOL
TM

 PE process controller are discussed below. 

An important operability constraint is maintaining the 

cooled cycle gas returned with fresh monomer to the 

fluidized bed distributor as dry (no hydrocarbon 

condensation) or wet (including condensed hydrocarbon). If 

returned wet, then there is typically an upper limit on the 

liquid fraction. Polymer production rate is typically 

maximized at the intersection of maximum cooling constraint 

– such as valve position at output limit – and maximum 

liquid fraction of cycle gas (or minimum approach of cycle 

gas temperature to dew point for dry operation). 

First, predicting the valve position constraint is discussed. 

The flowsheet approach for the process model conserves 

energy and material balances. Use of an exchanger model 

enables prediction of required cooling water flow, which has 

a relatively simple, direct relationship with cooling water 

valve position that can be determined in a spreadsheet using 

traditional linear regression on plant data. (This is akin to 

determining the “measured” valve characteristic.) Online 

state estimation can be used to update an output bias for the 

predicted valve position. It can also be noted that online state 

estimation can be used to update the input disturbance of 

exchanger UA thus facilitating use of a “simple” exchanger 

UA model within the flowsheet.  

Now we turn to the cycle gas cooler exit liquid fraction 

constraint. An online measurement is not available so, as was 

the case for polymer properties, a more detailed flowsheet 

modeling approach is required. Given that the process may 

be operated in a high hydrogen concentration regime, for 

offline studies specialized thermodynamic relationships can 

be used to predict the process-side flash. However, there are 

concerns to incorporate such relationships within the control 

flowsheet model due to expectation of multiple roots from 

the relevant equations that may affect the solution 

robustness. Resolution of this issue is to emulate the 

specialized thermodynamic relationships by determining and 

using “k-value” multipliers that adjust base k-values 

predicted from a more basic equation of state such that the 

model predictions with these “k-value” multipliers result in a 

reasonably closed energy balance for various sets of process 

data. These “k-value” multipliers are determined using the 

offline tool discussed for determining kinetic parameters. 



  

IX. MATCHING THE CONTROL MODEL TO THE PROCESS: 

ONLINE STATE ESTIMATION – CONTINUOUS MEASUREMENTS 

Unmodeled features of a physical process pose a 

limitation, in particular, for model-based control. Before 

optimized manipulated variable (MV) moves can be 

computed, the current model states must reasonably match 

the measurements from the actual process. Several 

approaches are discussed in the technical literature for 

implanting this match (termed state estimation). We prefer 

more direct optimization approaches such as MHE because 

the real world nonlinear differential algebraic equation (DAE) 

model forms, including partial DAEs (PDAE), are easily 

accommodated in this formulation. This allows for the 

exploitation of sparsity, which is critical to success in using 

flowsheet models for process control/optimization 

applications. Constraints are also naturally handled in MHE 

approaches. Our focus is to use state estimation approaches 

that facilitate the use of less sophisticated models for 

predictive analysis as discussed in [2].  

We have found that EKF is not appropriate for large sparse 

models such as those generated by flowsheet models as 

elimination of algebraic equations during the linearization 

process is required for the computation of Kalman gains. 

This typically destroys any sparsity present in the model. In 

addition, flowsheet models generally contain a large number 

of algebraic equations, usually precluding state reduction to 

reduce the problem size. 

X. MATCHING THE CONTROL MODEL TO THE PROCESS: ONLINE 

STATE ESTIMATION – DISCONTINUOUS MEASUREMENTS 

Section III discussed that measurements for the actual 

quality CVs are often only available on a delayed and discrete 

basis (for example as laboratory measurements). This was 

the argument for initially focusing model description on 

prediction of the quality property CVs. However, the CV 

measurement needs to be used to update the control model as 

it is this measurement (not model prediction) that determines 

whether the product is within quality specifications. 

In the absence of an automated system the board operator 

uses human judgment to respond to a new laboratory 

measurement and the objective of automation is to match or 

exceed the judgment of the “best operator”. Application of 

traditional Statistical Process Control (SPC) to the laboratory 

measurement tends to be insufficient as: 

� The time to obtain the measurement subsequent to 

sampling is relatively long compared to reactor 

residence time. 

� Inhibitors/poisons in small quantities can cause 

properties to drift at steady state.  

Our experience has been to apply additive or 

multiplicative output biases to the underlying model-

predicted values for polymer properties to generate the 

controller predicted value. On receipt of a new laboratory 

measurement, a new additive bias is calculated through: 

Aerror = CVmeas – CVmodel 

Abias = Abiasold + Gain * Aerror 

And a new multiplicative bias is calculated through: 

Merror = Ln (CVmeas – Offset) – Ln (CVmodel – Offset) 

Mbias = Exp (Ln (Mbiasold) + Gain * Merror) 

where: 

CVmeas  New laboratory measurement value 

CVmodel Controller unbiased model prediction value 

corresponding to the process time (sample time – 

process/sample dead time) the sample was taken.   

Gain   Bias feedback gain term 
Offset  Fixed offset value (typically zero) 

Aerror, Merror  Error  

Abias, Mbias   New bias 

Abiasold, Mbiasold Previous value of bias 

for which engineering judgment applies to: 

� Selection of the model variable to be updated 

� Choice of additive or multiplicative output bias  

� Setting values for Gain 

If the model prediction change for a step input is a fairly 

constant absolute delta, independent of the underlying model 

prediction value, an additive output bias is most appropriate. 

A multiplicative output bias is most appropriate when the 

model prediction change for a step input is generally a fairly 

constant fraction of the current measurement. 

Melt index is known to be consistent with the expectations 

for using a multiplicative output bias – this can also be 

inferred from the relatively common practice described in 

the literature of using a logarithm transformation on the melt 

index to generate a variable more suitable to be handled with 

a more traditional linear multivariable controller. Thus 

model predicted melt index is updated using the 

multiplicative output bias approach (and this same bias is 

also applied to the instantaneous melt index which is a 

constraint controlled variable in the controller matrix). 

For polymer density, the approach to update the model 

from the laboratory measurement has been varied – and the 

choice between additive and multiplicative biases has been 

application-specific. Multiplicative output biases have been 

applied on variables transformed from the base laboratory 

measurement, such as percent comonomer incorporated. 

Our practice also uses a variable Gain set by a heuristic 

algorithm, nominally emulating the judgment of the “best 

operator”. Inputs to the algorithm include the trend of the 

discrepancy between unbiased model prediction and actual 

laboratory measurement: if drift is detected the Gain is 

increased in order to catch up with the process. In the 

absence of drift the Gain is set lower. If the occasional 

“outlier” is sometimes present in the laboratory 

measurements, then the algorithm is set to use a low value 

for Gain on the first occasion of a significant discrepancy 

between model prediction and laboratory measurement. 



  

XI. CONCLUSIONS 

In the context of development and implementation of 

dynamic flowsheet models embedded within nonlinear 

controllers, this paper has discussed: 

� Factors affecting choice of flowsheet modeling 

approach 

� Determination of kinetic and other parameters for the 

flowsheet model 

� Coupling use of continuous state estimation with less 

fidelity in the flowsheet model 

� Use of delayed discrete measurements for state 

estimation 

Much of the discussion has been based around engineering 

“common sense”. As a very broad generalization, an 

argument has been made for a rigorous first principles 

approach for the reactor(s) coupled with simpler 

flowsheeting modeling that maintains energy and material 

balances for the remainder of the process. Practically some 

exceptions will occur to this generalization, as was discussed 

for the process side cooler for UNIPOL
TM

 PE process. 

Our experience is that the effort to develop the flowsheet 

model embedded within the controller is akin to the effort 

required to develop empirical models for traditional linear 

multivariable controllers. As such, this approach to nonlinear 

control bears serious consideration as it brings the potential 

benefits listed in Table 3, some of which were discussed in 

[7]. 

TABLE 3: CONTROLLER EMBEDDED MODEL ADVANTAGES 

Issue Notes 

Offline study Dynamic chemical engineering control model from the 

online controller available for offline study use. 

Regression 

validity concerns 

Reduced engineering focus for regression evaluation 

due to the underlying nature of the control model. 

Handling new 

grades 

Validation exercise rather than a re-engineering 

exercise due to the nature of the control model. 

Inferred 

measurements 

All states in the control model are available, including 

intrinsic instantaneous polymer properties. 
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