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Abstract 

 Hotelling’s statistic, also called T2-statistic, is widely used in statistical process control as an 
extension of the univariate student’s chart to reliably detect out of control status in multivariate 
processes. Although it is a very efficient tool for detection purposes, by itself, it offers no assistance 
about the origin of the declared faulty status. Several different approaches have been proposed to 
estimate the variable values’ effect on the overall statistic’s value. Some of these strategies work in the 
original measurement space while others interpret the results coming from the analysis in latent 
variable spaces using for example principal component analysis (PCA) or independent component 
analysis (ICA). In this work we present a novel strategy based on finding the nearest “in-control” 
neighbour of the observation point. 

Introduction 

 Statistical process monitoring involves three activities: detection of the out-of-control or faulty 
status, identification of the variable or variables that signal such condition, and diagnosis of the source 
cause for the abnormal behaviour. Although Hotelling’s statistic is widely used to reliably detect out of 
control status it offers no assistance in the identification stage. A number of strategies have been 
proposed to assign variable-contribution values to the T2-statistic taking into account the multivariate 
nature of process data. 

 Mason et al. [1,2] proposed to decompose the T2-statistic value as a summation of J 
independent parts (where J is the number of measured variables). The first term is calculated squaring 
a univariate t statistic for one variable. The jth term ( j=2, …, J) of the sum is the jth measurement 
adjusted by using estimates of the mean and standard deviation of its conditional probability 
distribution given the (j−1) previously considered variables. Since there exists no fixed order variables, 
J! different but non-independent partitions can be obtained. As a possible solution for this problem, 
authors suggested to focus the interest in only two of those terms for each partition: the one 
corresponding to the unadjusted contribution of a single selected variable and, the term containing the 
adjusted contributions of this variable after the adjustment of the (J−1) remaining ones. Nevertheless, 
when the inspection of this reduced set of terms is not enough to come to a clear conclusion, all 
significant conditional terms should be compared to a critical value, increasing the complexity of the 
identification of the source fault. An alternative straightforward method to decompose the T2-statistic 
as a unique sum of variable contributions was recently presented by Alvarez et al. [3]. This method 
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also provides a clear understanding of positive and negative contributions which often results from the 
techniques mentioned here and, estimates a bound for the negative ones. 

 Among the methods that work in latent variable-spaces, it was Jackson [4] who first proposed 
the decomposition of the T2-statistic into a sum of principal components and perform the identification 
in terms of the weight of each variable in the of out-of-control component. However, in most of the 
industrial applications it results very difficult to associate a physical meaning to each principal 
component and, the variables associated with out-of-control signals cannot be determined easily. 
Miller et al. [5] and MacGregor et al. [6] proposed to evaluate the contributions of each process 
variable to the scores that are outside of their confidence limits. Nomikos [7] presented an approach to 
calculate the contributions of each process variable to the T2-statistic instead of to the scores, when 
latent variables cannot be associated to a meaningful group of process variables. Westerhuis et al. [8] 
extended the theory of contribution plots to latent variable models with correlated scores and, 
introduced control limits for the contributions that help in finding the variables which behaviour are 
different with respect to those contained in the reference data set. 

 In all the above mentioned methods, the contribution to the T2-statistic for each variable is 
estimated considering the remaining J-1 variables fixed at their measured values. As a result of this, 
there is a sole “parametric curve” defining all the possible values of the T2-statistic as function of only 
the analyzed variable, as it was pointed out by Alvarez et al. [3]. 

Variable contributions and contribution plots 

 Let’s consider a chemical process in which J variables are measured and monitored over the 
time, and let x  be a process observation vector containing all of those measurements for a given time 
instant t. The value of the Hotelling’s statistic for x  can be estimated by: 

 
2 T 1( ) ( )T −= − −x x S x x , (1) 

where x  is the estimation of the population mean (μ ) and S  is the estimation for the variance-
covariance matrix Σ . If it is possible to assume that x  follows a normal multivariate distribution 
( ),( Σμx N= ), then T2 follows a [J(I2−1)/(I2−IJ)]FJ,I −J,α distribution, where, FJ,I −J,α is the value of the F 
distribution for a level of significance α, with J and (I−J) degrees of freedom and I is the number of 
observations of the reference population. 

As can be seen in equation (2), the Hotelling statistic has a squared form with the minimum at xx = . 
Since matrix S  is positive semidefinite, all the possible values for x  will generate statistic’s values 
that are greater than or equal to zero. For the sake of simplicity in nomenclature, the observation 
vectors x  will be considered to be standardized so that ( , )N≈x 0 R , where R  is the correlation 
matrix. 



 3

 
2

,
1 1

J J

i j i j
i j

T a x x
= =

= ∑∑  (2)
 

 

1,1 1,
1

,1 ,

N

N N N

a a

a a

−

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

R  (3) 

 This particular structure can be exploited in order to estimate the influence of each 
measurement in the final statistic’s value. 

 Mason et al. [1,2] proposed to decompose the T2-statistic value as a summation of J 
independent parts: 
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where 2
1t  is the student value of the first variable and 2

1 1,...,n nT + •  is the contribution of the jth 
measurement adjusted by using estimates of the mean and standard deviation of its conditional 
probability distribution given the ( j−1) previously considered variables. Since there exists no fixed 
order variables, it results possible to obtain J! different (but non-independent) partitions for T2. 

 Alvarez et al. [3] have recently presented an alternative straightforward method to decompose 
the T2-statistic as a unique sum of variable contributions as: 
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where xj
*/2 is the xj value that minimizes the value of T2 given the remaining J-1 variables values. This 

decomposition of the Hotelling’s statistic also allows to understand the meaning of a negative variable-
contribution and to estimate a bound for it. The variable contribution will take negative values if 0≤xj≤ 
xj

*. The minimum contribution value is ck
min that is located at xj= xj */ 2. If xj is out of 0≤xj≤xj

* the T2-
statistic is positive and it increases with |xj|. The value of variable xj contradicts the correlation 
structure if xj ≤ 0. On the other hand, a value of xj> xj

 * represents a large positive deviation with 
respect to the mean, in the direction indicated by the correlation matrix. 

 Several methods to calculate the variables’ contributions when latent variables projection 
methods are used have bee presented as well. Nomikos [7] proposed an approach to calculate the 
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contributions of each process variable to the Hotellings’ statistic (called D when projection methods 
are used) instead of to the scores when latent variables cannot be associated to a meaningful group of 
process variables. Westerhuis et al. [8] presented an extended approach of the contribution plots 
proposed by Nomikos [7] to be applicable also to latent variable models with correlated scores. They 
proposed to calculate the contribution of the jth variable to the inflated statistic value (cj) as: 

 
2 1 1 ˆD − −T T T T
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where t and SL are the coordinate of x̂  in the considered latent space and variance-covariance matrix 
respectively. The main drawback of this technique is that it associates no interpretation to the negative 
values that can result from the calculations. 

A Nearest In Control Neighbour Based Method (NICN) 

 Without assuming any gross error in measurements it still being possible to obtain an 
observation point whose statistic value exceeds the critical distribution value for a given significance 
level. This is possible if one or more variables in the observation vector does not behave as the 
observations in the reference population do (i.e. an anomalous event is really happening). Since one or 
more variables can be causing high values in the Hotelling’s statistic, the question of which are the 
faulty variables has to be answered. One possible answer to that question could be given based in the 
knowledge of the nearest neighbour of the observation point that is in control. This information gives 
us an idea of how far from an in control allocation the faulty observation is and, which the minimum 
distance and direction that should be explained by an anomalous situation is. The problem of finding 
this nearest neighbour can be stated as an optimization problem, where the objective is to find an 
alternative point that minimizes a distance function to the measured point, subject to the constrain that 
the corresponding T2-value is equal to or less than 2

CT . 

 
1ˆ ˆmin ( ) ( )

. .s t

−− −Tx x Ψ x x
 (10) 

 
1 2

CT− ≤Tx Σ x , (11) 

where Ψ  is the matrix that defines the type of distance chosen to measure the proximity to the faulty 
observation and, Σ  is the correlation matrix estimated from the reference population. 

 The first order optimality conditions for the constrained optimization problem stated in 
equation (10) result: 
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 If we choose the distance measure to be minimized as the Mahalanobis distance between the 
observation and its nearest in control neighbour (i.e. =Ψ Σ ) equations (14) and (15) can be written as: 
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and the feasible points can be obtained by solving the equation system below. 
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 Considering that there are only two possible solutions; the comparison of the objective function 
at both solutions results much easier than evaluating the second order optimality conditions to decide 
which one is the corresponding nearest neighbour. 

 The solution for the more general situation, when ≠Ψ Σ  is more difficult to be obtained in an 
analytical way. Nevertheless the computational cost of considering different distances’ metrics is not 
much bigger. 

 Figure 1 shows the level curves for the two variables’ case. It shows the shape and intersections 
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between different T2-value curves and the lines defined by the Euclidean distance (green full lines) and 
the Mahalanobis distance (blue dashed lines) to the out of control observation. Two different points are 
considered to be out of control p1=[-1,2] and p2=[2,0] and the reference distribution is supposed to 
have its mean in [0,0]. It may be noticed that the line defined for the neighbours when =Ψ Σ  forms a 
straight line. On the other hand, when the Euclidean distance is considered the intersections follows a 
non-linear curve. 

 

Figure 1- Different positions for the nearest in control neighbour depending on the selection of the 
distance metric. 

 The contribution of each variable to the inflated statistic value ( )jc  can be estimated in several 
ways using this information. The easiest way is to compare the distance in which each variable should 
be modified to reach the nearest in control point against the average value of these distances for that 
observation point. Since all the variables should have been previously standardized (to be 
dimensionless) the comparison of the resulting movements in each direction can be used as estimates 
of the deviation degree of each variable, and can be used in a similar way as classically used in 
contribution plots. Then the directions whose changes are greater than the single threshold value (τ ), 
are considered as suspicious variables: 
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Other alternatives can be used, for example, evaluating the contribution of each variable at the out of 
control observation as Alvarez et al. [3] proposed. After that, the same can be done at the resulting 
neighbour point. The change in each variable’s contribution between these two points is an estimation 
of the contribution of each variable to the out of control state. 

Case Studies 

 In this section, variable contributions to the T2-statistic are obtained by applying the proposed 
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strategy and compared with those estimated by using the original space strategy (OSS) (Alvarez et al. 
[3]) and the ones calculated by using equations (7) to (9). due to Westerhuis et al. [8]. Results for two 
case studies are provided. 

Case Study I 

 Let us consider the data set formed by 20 observations of four variables presented by De 
Maesschalck et al. [9] as a reference data set. In addition, seven test observations are proposed to show 
how their T2-statistic’s values are interpreted by each of the three strategies (Table 1). The pairs of 
measurements TEST1/TEST2 and TEST3/TEST4 have the same Euclidean distance from the mean 
vector but some variables present deviations of different sign and magnitude. 

Table 1 Test observations 
 Observation Euclidean Distance to the Mean 

TEST1 [1.000  5.350  3.125  3.245] 5.000 
TEST2 [11.00  5.350  3.125  3.245] 5.000 
TEST3 [1.000  7.000  3.125  3.245] 5.265 
TEST4 [11.00  7.000  3.125  3.245] 5.265 
TEST5 [8.000  7.000  11.00  5.000] 8.475 
TEST6 [2.000  8.000  8.000  7.000] 7.803 
TEST7 [2.100  3.100  7.900  4.900] 6.769 

 

The same statistic value is obtained for TEST1 and TEST2. It is independent of the deviation sign 
because the three remaining variables are at their mean values. For TEST3 and TEST4 two variables 
deviate with respect to their means. The deviation of variable 2 is the same for both observations. In 
contrast, the deviation of variable 1 has the same magnitude but different sign. Note that 

3

2
TESTT  >

4

2
TESTT  

and it is also greater than the critical value. The difference between TEST3 and TEST4 arises because 
the sign of TEST3's deviation contradicts more the correlation structure. For the observation TEST5, 

5

2
TESTT  is greater than the statistic critical value for α=0.05 but not for α=0.01. Regarding TEST6, 

6

2
TESTT  

is larger than the critical value of the statistic for both levels of significance. The value of the variable 
contributions to the 2T  obtained by using the NICN and the OSS approaches are shown in Table 2 and 
Table 3 respectively. Contributions which are above their corresponding limit are underlined and in 
bold. 

Table 2. OSS variable contributions 
Observation 

2

1
Tc  

2

2
Tc  

2

3
Tc  

2

4
Tc  2T  

TEST1 , TEST2 11.92 0.000 0.000 0.000 11.92 
TEST3 16.59 7.906 0.000 0.000 24.49 
TEST4 7.256 -1.425 0.000 0.000 5.832 
TEST5 1.024 -0.233 14.97 -0.402 15.36 
TEST6 9.872 7.986 1.292 8.266 27.42 
TEST7 0.582 3.290 3.905 3.105 10.88 
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Table 3. NICN variable contributions 
Observation 

2

1
Tc  

2

2
Tc  

2

3
Tc  

2

4
Tc  

TEST1 , TEST2 
0.1762 
2.0337 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

TEST3 
0.7847 
0.0033 

0.3740 
0.0016 

0.000 
0.000 

0.000 
0.000 

TEST4 
2.6438 
7.5539 

0.5190 
1.4829 

0.000 
0.000 

0.000 
0.000 

TEST5 
0.0001 
0.0614 

0.0000 
0.0140 

0.0021 
0.8977 

0.0001 
0.0241 

TEST6 
0.6693 
0.0459 

0.5414 
0.0371 

0.0876 
0.0060 

0.5604 
0.0385 

TEST7 
0.0176 
0.1336 

0.0996 
0.7549 

0.1182 
0.8959 

0.0940 
0.7124 

α=0.05 (above), α=0.01 (bellow) 

 

It can be easily noticed in the tables above that the identification capabilities of OSS and NICN are 
similar, only TEST7 presents differences in the suspicious set of variables since no contribution 
exceeds its limits when OSS strategy is applied. 

 Since the strategy developed by Westerhuis et al. [8] uses a latent variable model, a PCA 
model of the reference data was performed considering three retained PCs, reaching a variance 
reconstruction over 95%. Detection capabilities of the Hotelling’s statistic are strongly affected by the 
dimension reduction. Only TEST5 and TEST6 are detected as faulty observations by D-statistic. 
Consequently, only values for those will be analyzed for comparison purposes. In addition, it should be 
pointed out that neither TEST4 nor TEST7 were indicated as faulty observations for any statistic. Table 
4 shows the corresponding values for D and SPE  statistics. Values in bold indicate that the 
corresponding statistic detects a fault. 

Table 4. D and SPE statistics for Case Study I when PCA is applied 
 D SPE 

TEST1 2.85 1.82 
TEST2 2.85 1.82 
TEST3 2.91 4.48 
TEST4 4.138 0.34 
TEST5 15.31 0.01 
TEST6 20.34 1.42 
TEST7 10.12 0.15 

DC,0.05=11.25 
DC,0.01=18.25 

SPEC,0.05=0.81 
SPEC,0.01=1.48 

 

 

 Table 5 shows the values for the contributions for these observations by using equations (7) to 
(9). For TEST5, variable 3x  is pointed out as the faulty variable in concordance with the results 
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obtained before. In contrast, when TEST6 is analysed only variables 1x  and 4x  are highlighted leaving 

2x  as an in-control variable. 

Table 5. Variable contributions according to Westerhuis 
Observation 1

Dc  2
Dc  3

Dc  4
Dc  D  

TEST5 0.7743 0.1206 15.1038 -0.6818 15.31 
TEST6 3.4648 0.6809 0.2392 15.9576 20.34 

 
Case Study II 

 The second case study is a tubular reactor where the reaction A+B→3C takes place. The set of 
measured variables is composed by ten observations: the inlet composition of A, B and C compounds, 
inlet reactor and refrigerant temperatures, inlet flowrate, reactor temperature at axial positions of 10 m 
and 20 m, outlet reactor temperature and outlet composition of C compound, which are identified as 
variables 1 to 10, respectively. The reference population is formed by thirty seven observations and, 
four additional runs are considered to perform the same comparisons as in the previous case. For run 
(R1) an increment in the composition of component C in the feed is simulated. An increase in the 
outlet temperature is considered in run (R2). The third run, (R3), shows a reduction in both the 
refrigerant temperature and the reactor temperature at 10 m as well as a high value on the C 
concentration at the reactor outlet. The last run, (R4), corresponds to a reduction in the outlet 
temperature and an increment in the inlet concentration of component C. 

 
Table 6 OSS variable contributions for Case Study II 

Run 
2

1
Tc  

2

2
Tc  

2

3
Tc  

2

4
Tc  

2

5
Tc  

2

6
Tc  

2

7
Tc  

2

8
Tc  

2

9
Tc  

2

10
Tc  

R1 3.040 -0.020 336.8 3.770 39.85 0.540 21.59 2.770 -59.70 -3.290 
R2 -356.0 -33.10 -0.100 -207.0 -1486 5.300 74.70 4.100 1294 805.3 
R3 -523.0 35.70 1.000 -273.0 955.8 -0.900 504.0 16.20 -1287 680.0 
R4 11.75 -111.0 2.890 34.64 -912.0 1.320 -83.80 3.120 736.6 358.4 

 
Variable contributions to the 2T -statistic, calculated using OSS strategy, are presented in Table 

6 for each run in which the D-statistic is greater than the critical values. Critical values for the OSS-
based contributions were calculated as the mean value plus three standard deviations of those obtained 
from the reference data set. 

Table 7 NICN variable contributions for Case Study II 
Run 

2

1
Tc  

2

2
Tc  

2

3
Tc  

2

4
Tc  

2

5
Tc  

2

6
Tc  

2

7
Tc  

2

8
Tc  

2

9
Tc  

2

10
Tc  

R1 13.037 0.9767 166.81 13.366 43.323 0.7645 53.699 3.4070 71.829 21.995 
R2 72.776 6.7550 0.0149 42.257 303.41 1.0724 15.178 0.8274 264.21 164.41 
R3 117.28 7.9861 0.2316 61.078 214.39 0.2058 113.11 3.6351 288.37 152.42 
R4 0.2924 2.7674 0.0722 0.8654 22.877 0.0328 2.0993 0.0778 18.488 8.9806 

 
 Table 7 shows the variables’ contributions when the NICN approach is used. In this case the 
threshold value for contributions was set at 2 τ . Some differences appear when comparing against 
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Table 6. This is due to the fact that all the directions are modified when NICN approach is applied in 
contrast to the “fixed curve” approach given by the OSS which produce very high negative values for 
some contributions. 

A PCA of the same data have been carried out giving a total variance reconstruction of 75.4% 
when three P.C.s are retained (Cattell's criterion [4] has been used to choose the number of retained 
PCs). When the PCA model is used to evaluate these observations, only R1 is pointed out as an out of 
control observation and the variables’ contributions are shown in Table 8.  

Table 8 Variable contributions according to Westerhuis 
Run Dc1  

Dc2  
Dc3  

Dc4  
Dc5  

Dc6  
Dc7  

Dc8  
Dc9  

Dc10  
R1 0.4363 -0.0088 113.03 0.1250 -0.0361 0.0840 -0.1359 -0.1765 0.0191 0.2039 

 

As can be seen in Table 8, for (R1) the main contribution corresponds to the third variable 
(inlet C concentration), which is consistent with the actual simulated deviation. The same result is 
obtained using the other strategies. 

The proposed technique has also been applied to industrial case studies, and to interpret results 
in latent variable spaces. More congruous results between the D-statistic variable contributions and the 
SPE-statistic variable contributions are obtained when the first ones are calculated using the proposed 
method 

Conclusions 

When projection techniques are used to reduce the space dimension it is possible to have either some 
missing or false alarms when compared with the original space results as it was shown by Alvarez et al 
[3]. This discrepancy could be due to an incorrect selection of the number of retained PCs and 
therefore, a strategy working in the original space can help to overcome this problem. In this work, a 
novel method to estimate the variable contribution to the T2-statistic is presented. Given a measured 
point which T2-value exceeds the critical value 2

CT , the contribution of each variable is determined in 
terms of the minimum distance between the measured point and its closer neighbour with a T2-value 
equal to T2

C. Results have shown a good performance when this technique is applied in the original 
variable space and they are similar to those obtained using the OSS strategy proposed by Alvarez et al 
[3]. Moreover, in other case studies it was noticed that results of NICN approach are more congruent 
with SPE contributions than those obtained using the classical approaches when PCA models are 
employed. 

Acknowledgments 

The authors wish to thank the financial support of CONICET (National Research Council of 
Argentina), ANPCyT (National Agency for the Science and Technological Promotion), UNS 
(Universidad Nacional del Sur, Bahía Blanca, Argentina) and the European Community project 
MRTN-CT-2004-512233  

 



 11

References 

1. Mason, R. L., N. D. Tracy and J. C. Young (1995), "Decomposition of T2 for multivariate 
control chart interpretation", Journal of Quality Technology, 27, 99-108. 

2. Mason, R. L., N. D. Tracy and J. C. Young (1997), "A practical approach for interpreting 
multivariate T2 control chart signals", Journal of Quality Technology, 29, 396-406. 

3. Alvarez, C. R., A. Brandolin and M. C. Sanchez (2007), "On the variable contributions to the 
D-statistic", Chemometrics and Intelligent Laboratory Systems, 88, 189-196. 

4. Jackson, J. E. (1991), "A User’s Guide to Principal Components", John Wiley & Sons, Inc., 
United States of America. 

5. Miller, P., R. E. Swanson and C. F. Heckler (1999), "Contribution plots: The missing link in 
multivariative quality control", Applied Mathematics Computer Science, 8, 775-792. 

6. Macgregor, J. F., C. Jaeckle, C. Kiparissides and M. Koutoudi (1994), "Process monitoring and 
diagnosis by multiblock PLS methods", AIChE Journal, 40, 826-838. 

7. Nomikos, P. and J. F. Macgregor (1994), "Monitoring of Batch Process Using Multiway 
Principal Component Analysis", AIChE Journal, 40, 1361-1375. 

8. Westerhuis, J. A., S. P. Gurden and A. K. Smilde (2000), "Generalized contribution plots in 
multivariate statistical process monitoring", Chemometrics and Intelligent Laboratory Systems, 
51, 95-114. 

9. De Maesschalck, R., D. Jouan-Rimbaud and D. L. Massart (2000), "The Mahalanobis 
distance", Chemometrics and Intelligent Laboratory Systems, 50, 1-18. 

 


