740d Nanoscale Catalytic Materials by Swelling, Pillaring and Exfoliation of a Zeolite Precursor

Sudeep Maheshwari1, Edgar Jordan2, Sandeep Kumar1, Frank S. Bates1, R. Lee Penn3, Daniel F. Shantz2, and Michael Tsapatsis1. (1) Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, (2) Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, (3) Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455

The zeolite MCM-22 is formed by calcination of a layered precursor, MCM-22(P)[1]. The layered structure of the precursor allows swelling, pillaring and exfoliation to single layers to produce a host of nanomaterials[2,3]. However, these procedures result in significant degradation of the structure of the layers with partial loss of crystallinity[4,5]. In this work, we describe a modified approach to swell, pillar and exfoliate the MCM-22 layered precursor with improved preservation of crystal morphology and alumino-silicate layer structure. XRD reveals that the swollen derivative evolves to a new ordered layer structure upon washing with water. Solid state NMR spectroscopy indicates preservation of framework connectivity. This ordered material can act as starting material to form inorganic/organic hybrid catalysts with specific guest-host interactions. Interestingly, the swollen derivative can be restored back to the precursor structure by acidification. It can be successfully pillared to produce an MCM-36[2] analogue or exfoliated to produce a high surface area material analogous to ITQ-2[3] but with improved crystallinity. The resulting materials are expected to exhibit distinct catalytic behavior compared to the pre-existing analogues, due to the improved preservation of the pore structure and catalytic sites.

[1] Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K. , Science, 1994, 264, 1910-13.

[2] Kresge, C. T.; Roth, W. J., US Patent 5278115, 1994.

[3] Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, T. L. M.; Buglass, J. G., Nature, 1998, 396, 353-356.

[4] Schenkel, R.; Barth, J. O.; Kornatowski, J.; Lercher, J. A., Studies in Surface Science and Catalysis, 2002, 142A, 69-76.

[5] Wu, P.; Nuntasri, D.; Ruan, J.; Liu, Y.; He, M.; Fan, W.; Terasaki, O.; Tatsumi, T., Journal of Physical Chemistry B, 2004, 108, 19126-19131.