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Introduction 
 
 Equations of state may be used to calculate pure component vapor-liquid equilibrium 
properties such as vapor pressure, heat of vaporization, liquid density, and vapor density. The 
standard approach requires coupling the EOS with a phase equilibrium criterion such as free 
energy, chemical potential, or fugacity. The resulting equations are nonlinear and must be 
solved by numerical methods.  
 
 An alternative approach is applicable to cubic EOS such as the commonly used 
Soave-Redlich-Kwong and Peng-Robinson equations. Equilibrium properties may be explicitly 
expressed as power series in reduced temperature or related functions. These results are 
more convenient than numerical calculations, but are subject to truncation error in many 
practical situations.  
 
 Results from such a power series method for the SRK equation were used to generate 
generalized dimensionless vapor pressure equations which were extensions of the commonly 
used Antoine equation but valid over wider temperature ranges. The substance-specific 
adjustable constants of the vapor pressure equations were expressed as functions of the 
acentric factor of the substance and its critical temperature and pressure. The deviations 
between these results and the exact vapor pressure predictions from the SRK equation were 
quantitatively characterized. 
 
 
VLE from Cubic Equations of State 
 
 Cubic equations of state of the Van der Waals type are widely used in chemical 
engineering practice because they provide a reasonable balance between accuracy and 
simplicity.  Two common examples are the Soave-Redlich-Kwong [1] and Peng-Robinson [2] 
equations, shown below as Eqs. (1) and (2), 
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 In these equations, the attractive function aEQ(T) has the form 
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with the critical value of  
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and the acentric factor functions given by  
 

2176.0574.1480.0)( ωωω −+=SRKf  (5) 
226992.054226.137464.0)( ωωω −+=PRf  (6) 

 
The occupied volume parameter b is given by 
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Values of the dimensionless numerical constants in Eqs. (4) and (7) are a0,SRK = 0.42748, a0,PR 
= 0.45724, b0,SRK = 0.08664, and b0,PR = 0.07780. 
 
 Like many equations of state, SRK and PR may be used to calculate vapor pressure 
and other pure component vapor-liquid equilibrium properties.  Doing this requires coupling the 
EOS with a phase equilibrium criterion such as free energy, chemical potential, or fugacity.  
Eqs. (8) and (9) give expressions for the pure component fugacity coefficient for SRK and PR. 
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When an equilibrium state exists, Eq. (1) gives three real roots for volume from SRK.  The 
smallest and largest of these are liquid and vapor volumes, respectively.  The fugacity 
coefficients calculated by Eq. (8) will be equal when the liquid volume is substituted and when 
the vapor volume is substituted.  For PR, Eqs. (2) and (9) are used.  A numerical algorithm is 
required to solve either of these sets of nonlinear equations.  
 
 
Power Series Methods for Cubic Equation VLE 
 
 A formal procedure [3] is available to express results for phase densities and vapor 
pressure of coexisting liquid and vapor phases as analytic power series in temperature.  The 
approach begins by writing reduced deviation variables for phase densities (∆ρL and ∆ρV) and 
temperature (∆T) about the critical point.  These variables are defined as  
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with M representing either ρL, ρV, or T.  The resulting formal power series are 
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 After equilibrium constraints are applied to these series, the coefficients Aj and Bi are 
observed to be functions of the acentric factor function fEQ(ω) which depend upon the cubic 
EOS being applied.  They are substance-dependent since they contain the acentric factor 
function.  For SRK and PR, Aj is given by a polynomial of degree j in the acentric factor 
function, Bi is given by a polynomial of degree (i-1) in the acentric factor function for even i, 
and by a similar polynomial multiplied by the square root of (1+ fEQ(ω)) for odd i.  Expressions 
for these polynomials have been tabulated. [4,5] 
 
 The utility of this method stems from the convenience of direct computation of 
coexisting phase properties without need for auxiliary equilibrium criteria such as fugacities.  
The weaknesses of the method arise from being based upon a series expansion about the 
critical point.  In practice, the infinite series given by Eqs. (13) to (15) must be truncated.  Few 
terms are required near the critical point, but this is the situation where cubic EOS are least 
accurate.  At moderately high or moderate temperatures, where the equations have 
reasonable accuracy, many series terms are needed to prevent truncation error.  The 
magnitude of truncation error also depends upon the property (phase density or vapor 
pressure) and varies with acentric factor.  In general, truncation errors are largest for vapor 
density and smallest for liquid density, they are larger for the PR equation as compared to 
SRK, and they increase with increasing acentric factor. 
 
 
Generalized Antoine Vapor Pressure Functions Derived from Power Series  
 
 In previous work, a generalized form of the Antoine vapor pressure equation was 
developed.  In the traditional Antoine equation, dimensional constants are used to fit vapor 
pressure data over a temperature range. 
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This was adapted by writing the Antoine equation in reduced variables as Eq. (17) where the 
constants are expressed as functions of the acentric factor. 
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Results for the functions A*, B*, and C* for the SRK equation are available for reduced 
temperatures in the range 0.6 < Tr < 1.0, and for the PR equation in the range 0.7 < Tr < 1.0. 
[6]  A sample of typical results is shown in Table 1.  As is the case with the traditional Antoine 
equation, the range of accuracy is limited -- in this example to reduced temperatures between 
0.70 and 0.84.  Figure 1 illustrates the accuracy of the method.  Each curve in Figure 1 
represents a different acentric factor.  Within the specified temperature range (0.70 < Tr < 0.84) 
the vapor pressures predicted by Eq. (17) match the exact SRK vapor pressures to within less 
than 0.1 percent deviation for all acentric factors between -0.12 and +0.72. 
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Figure 1.  Percentage Deviation between Vapor Pressure Predicted by Generalized Antoine 
Equation, Eq. (17), and Exact SRK Vapor Pressure for Various Acentric Factors. 

Table 1.  Antoine Constant Functions for the SRK Equation for 0.70 < Tr < 0.84. 
 
A* = 4.4401 + 2.2128fSRK(ω) - 0.53518fSRK(ω)2 + 0.17368fSRK(ω)3 - 0.018512fSRK(ω)4 
B* = 5.0075 + 1.2494fSRK(ω) - 0.78155fSRK(ω)2 + 0.32010fSRK(ω)3 - 0.047601fSRK(ω)4 
C* = 0.124652 - 0.273702fSRK(ω) + 0.0750076fSRK(ω)2 - 0.0137818fSRK(ω)3 + 
0.00145038fSRK(ω)4 



 In the current work, the method was adapted and applied to generalized versions of 
extended forms of the Antoine equation, given by Eqs. (18) and (19). 
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Analogous to Eq. (17), the constants in Eqs. (18) and (19) were polynomials of the acentric 
factor function fSRK(ω).  Some examples of these functions are shown in Tables 2 and 3.   
 
 Like Eq. (17), the generalized extended Antoine equation given by Eq. (18) was 
capable of estimating vapor pressures within less than 0.1 percent deviation from the exact 
SRK values for the reduced temperature range 0.6 < Tr < 1.0.  Also like Eq. (17), three distinct 
sets of Antoine constant functions were needed to span this temperature range.  One 
advantage of Eq. (18) was that the Antoine constant functions were cubic polynomials in the 
acentric factor function fSRK(ω), whereas Eq. (17) required quartic (4th degree) polynomials to 
achieve the same accuracy of prediction. 

 

 
 Eq. (19) was more complex than Eqs. (17) and (18) because it contained five Antoine 
constant functions instead of three.  The advantage of Eq. (19) was that a single set of Antoine 
constant functions, shown in Table 3, was able to estimate SRK vapor pressures within the 
specified deviation for the entire reduced temperature range 0.60 < Tr < 1.0, as Figure 2 
verifies. 
 

Table 2.  Extended Antoine Constant Functions in Eq. (18) for the SRK Equation for the 
Temperature Range 0.60 < Tr < 0.72. 
 
A* = 2.8278 + 4.8255 fSRK(ω) + 2.7682 fSRK(ω)2  -  0.057280 fSRK(ω)3 
B* = 2.8422 + 4.8991 fSRK(ω) + 2.8244 fSRK(ω)2  -  0.069460 fSRK(ω)3 
K1

* = 1.1068 - 2.2926 fSRK(ω) - 3.2566 fSRK(ω)2  +  0.13569 fSRK(ω)3 

Table 3.  Extended Antoine Constant Functions in Eq. (19) for the SRK Equation for the 
Temperature Range 0.60 < Tr < 1.0. 
 
A* = 2.5713 + 3.8253 fSRK(ω) + 0.56359 fSRK(ω)2  + 0.42434 fSRK(ω)3  - 0.011805 fSRK(ω)4 
B* = 4.2778 + 6.9822 fSRK(ω) + 6.8127 fSRK(ω)2  - 0.57592 fSRK(ω)3 - 0.027427 fSRK(ω)4 
C* = 0.031642 + 0.00022474 fSRK(ω) - 0.00095525 fSRK(ω)2 + 0.00074762 fSRK(ω)3  
 - 0.00017628 fSRK(ω)4 
K4

* = 1.5758 + 2.9403 fSRK(ω) + 6.0484 fSRK(ω)2 - 0.98555 fSRK(ω)3  - 0.014798 fSRK(ω)4 
K5

* = -1.5345 - 6.4179 fSRK(ω) - 12.447 fSRK(ω)2  + 1.5234 fSRK(ω)3  + 0.036455 fSRK(ω)4 



-0.10%

-0.08%

-0.06%

-0.04%

-0.02%

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Reduced Temperature Tr

D
ev

ia
tio

n 
be

tw
ee

n 
Eq

. (
19

) a
nd

 E
xa

ct
 S

R
K

 
Va

po
r P

re
ss

ur
e

-0.12

-0.08

0.72

0.68

0.64

0.6

0.56

0.52

0.48

0.44

0.4

0.36

0.32

0.28

0.24

0.2

0.16

0.12

0.08

0.04

0

-0.04

 
Figure 2.  Percentage Deviation between Vapor Pressure Predicted by Generalized Extended 
Antoine Equation, Eq. (19), and Exact SRK Vapor Pressure for Various Acentric Factors. 
 
 Work continues on adapting these methods to other extended versions of the Antoine 
equation, especially those commonly used in process simulation software, to other cubic EOS 
such as PR, and to additional temperature ranges. 
 
 
Conclusions 
 
 Results for a generalized dimensionless form of two versions of an extended Antoine 
equation were presented.  These were shown to reproduce the vapor pressure predictions of 
the SRK cubic equation of state to within 0.1 percent deviation over the temperature range 
0.60 < Tr < 1.0 for all acentric factors between -0.12 and +0.72.   
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Nomenclature 
 
A Constant in Eq. (16), Antoine vapor pressure equation 
A* Function of acentric factor in Eqs. (17) to (19), generalized Antoine vapor pressure 
equations 
Aj temperature coefficients in Eq. (13) for reduced pressure 
aEQ(T) energy parameter in attractive term 
ac,EQ energy parameter in attractive term at the critical point 
a0,EQ dimensionless numerical coefficient of energy parameter  
B Constant in Eq. (16), Antoine vapor pressure equation 
B* Function of acentric factor in Eqs. (17) to (19), generalized Antoine vapor pressure 
equations 
Bi temperature coefficients in Eqs. (14) and (15) for reduced density deviation variables 
bEQ excluded volume parameter in equation of state 
b0,EQ dimensionless numerical coefficient of excluded volume parameter 
C Constant in Eq. (16), Antoine vapor pressure equation 
C* Function of acentric factor in Eqs. (17) and (19), generalized Antoine vapor pressure 
equations 
fEQ(ω) quadratic function of acentric factor 
h ratio of excluded volume parameter to molar volume 
K1

* Function of acentric factor in Eq. (18), generalized Antoine vapor pressure equation 
K4

* Function of acentric factor in Eq. (19), generalized Antoine vapor pressure equation 
K5

* Function of acentric factor in Eq. (19), generalized Antoine vapor pressure equation 
M general thermodynamic state property (T, ρL or ρV) in Eq. (12)  
P absolute pressure 
R gas constant 
T absolute temperature 
V molar volume 
z compressibility 
 
Greek letters 
 
ΔM reduced deviation variable of state property M (T, ρL or ρV) defined by Mr – 1 
ρ molar density 
φEQ fugacity coefficient for equation of state 
ω acentric factor 
 
Subscripts 
 
c critical (temperature, pressure, or molar density) 
EQ parameter or coefficient applying to equation of state EQ (SRK or PR) 
r reduced (temperature, pressure, or molar density) 
  
Superscripts 
 
L liquid (molar density or molar volume) 
V vapor (molar density or molar volume)  
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